organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-(2-Methyl­furan-3-yl)-N-phenyl-1,3,4-oxa­diazol-2-amine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Banaras Hindu University, Varanasi 221 005, India, bSchool of Studies in Chemistry, Jiwaji University, Gwalior 47011, India, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: manoj_vns2005@yahoo.co.in

Edited by J. Simpson, University of Otago, New Zealand (Received 18 October 2016; accepted 26 October 2016; online 1 November 2016)

In the title compound, C13H11N3O2, the furan ring is disordered over two orientations, with occupancies of 0.902 (2) and 0.098 (2). The dihedral angles between the central oxa­diazole ring and the pendant phenyl ring and the furan ring (major disorder component) are 10.12 (11) and 1.76 (15)°, respectively. A short intra­molecular C—H⋯O contact generates an S(6) ring. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(8) loops. The dimers are linked by C—H⋯π and ππ inter­actions [range of centroid–centroid distances = 3.301 (7)–3.689 (1) Å], generating a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The coordination chemistry of nitro­gen–oxygen containing heterocyclic ligands such as 1,3,4-oxa­diazo­les and their derivatives containing the HNCO moiety is an emerging and rapidly developing area of research (Wang et al., 2007[Wang, Y. T., Tang, G. M., Ma, W. Y. & Wan, W. Z. (2007). Polyhedron, 26, 782-790.]; Foroumadi et al., 2001[Foroumadi, A., Mirzaei, M. & Shafiee, A. (2001). Pharmazie, 56, 610-612.]; Bharty et al., 2012[Bharty, M. K., Bharti, A., Dani, R. K., Dulare, R., Bharati, P. & Singh, N. K. (2012). J. Mol. Struct. 1011, 34-41.]). 1,3,4-Oxa­diazole derivatives have also been the subject of extensive study in the recent years because of their diverse biological activities (Luo et al., 2016[Luo, Y., Liu, Z.-J., Chen, G., Shi, J., Li, J.-R. & Zhu, H.-L. (2016). Med. Chem. Commun. 7, 263-271.]; Aboraia et al., 2006[Aboraia, A. S., Abdel-Rahman, H. M., Mahfouz, N. H. & El-Gendy, M. A. (2006). Bioorg. Med. Chem. 14, 1236-1246.]; El-Emam et al., 2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]; Bharty et al., 2015[Bharty, M. K., Dani, R. K., Nath, P., Bharti, A., Singh, N. K., Prakash, O., Singh, R. K. & Butcher, R. J. (2015). Polyhedron, 98, 84-95.]). These mol­ecules can act as spacers in coordination compounds, resulting in inter­molecular cooperative inter­actions (Du & Zhao, 2004[Du, M. & Zhao, X.-J. (2004). J. Mol. Struct. 694, 235-240.]). In the presence of a base, the cyclization of acyl­dithio­carbazate esters to the corresponding 1,3,4-oxa­diazole is reported (Foks et al., 2002[Foks, H., Mieczkowska, J., Janowiec, M., Zwolska, Z. & Andrzejczyk, Z. (2002). Chem. Heterocycl. Compd. 38, 810-816.]). Several other methods are available for the synthesis of oxa­diazo­les from acyclic precursors. These include oxidative cyclization of acyl­hydrazones (Jedlovská & Leško, 1994[Jedlovská, E. & Leško, J. (1994). Synth. Commun. 24, 1879-1885.]) and acyl­thio­semicarbazides (Omar et al., 1996[Omar, F. A., Mahfouz, N. M. & Rahman, M. A. (1996). Eur. J. Med. Chem. 31, 819-825.], Paswan et al., 2015[Paswan, S., Bharty, M. K., Kumari, S., Gupta, S. K. & Singh, N. K. (2015). Acta Cryst. E71, o880-o881.]). It is reported that in the presence of a strong acid, an N-acyl­hydrazine carbodi­thio­ate is converted to a thia­diazole whereas in the presence of weak acid or base or on complexation they can be cyclized to the corresponding oxa­diazole (Reid & Heindel, 1976[Reid, J. R. & Heindel, N. D. (1976). J. Heterocycl. Chem. 13, 925-926.]; Jasinski et al., 2011[Jasinski, J. P., Bharty, M. K., Singh, N. K., Kushwaha, S. K. & Butcher, R. J. (2011). J. Chem. Crystallogr. 41, 6-11.]). Previously, we have reported 1,3,4-thia­diazo­les that were prepared by the reaction of a substituted thio­semicarbazide with manganese(II) nitrate, in which the substituted thio­semicarbazide cyclized to the corresponding thia­diazole via loss of H2O (Dani et al., 2014[Dani, R. K., Bharty, M. K., Kushawaha, S. K., Prakash, O., Sharma, V. K., Kharwar, R. N., Singh, R. K. & Singh, N. K. (2014). Polyhedron, 81, 261-272.]). However, in the present case, the substituted thio­semicarbazide is cyclized to (2-meth­yl)-5-furan-2-yl-[1,3,4]-oxa­diazole-2-yl)phenyl­amine in the presence of manganese(II) acetate in this case with loss of H2S (Fig. 1[link]). Thus, the MnII acetate behaves here as a weak acid.

[Figure 1]
Figure 1
A reaction scheme showing the synthesis of the title compound. For clarity in this and subsequent Figures, only the major disorder component of the furan ring is shown.

In the title compound (Fig. 2[link]), the mean plane of the central oxa­diazole ring (O1/C7/N2/N3/C8) subtends dihedral angles of 10.12 (11) and 1.76 (15)° with the furan (O2/C12/C9/C10/C11) and phenyl rings (C1–C6), respectively. The furan and phenyl rings are inclined to one another at an angle of 9.92 (14)°. Intra­molecular C2—H2A⋯O1 and C13—H13A⋯O1 hydrogen bonds generate S(6) rings, contributing to the planarity of the whole mol­ecule. The C—N bond lengths [N2—C7 1.2947 (19) and N3—C8 1.270 (2) Å] are similar to the standard C=N distance of 1.28 Å. The C—O and C—N distances found within the oxa­diazole ring are inter­mediate between single and double bonds, suggesting considerable delocalization in this ring. Deviation of the bond angles from 120° in the oxa­diazole ring is a common feature in five-membered rings.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen bonds are drawn as dashed lines.

In the crystal, pairs of inter­molecular N—H⋯N hydrogen bonds between the oxa­diazole ring and the amine group form dimers with an R22(8) ring motif (Fig. 3[link], Table 1[link]). Mol­ecules are further linked by two C—H⋯π inter­actions (Fig. 4[link] and Table 1[link]) involving the (O2/C9–C12) and (C1–C6) rings. In addition, weak ππ stacking inter­actions [Cg1⋯Cg1(−x, −y, 1 − z) = 3.301 (7) Å; Cg1⋯Cg2(x, −1 + y, z) = 3.612 (5) Å; Cg2⋯Cg2 (1/2 − x, 1/2 − y, 1 − z) = 3.689 (1) Å; Cg1, Cg2 and Cg3 are the centroids of the O1/C7–C8/N2–N3, O2/C9–C12 and C1–C6 rings respectively] are also present and influence the crystal packing (Fig. 5[link]). These contacts lead to a three-dimensional structure.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3, Cg2 are the centroids of the benzene (C1–C6) and furan (O2/C9–C12) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2i 0.92 (2) 1.97 (2) 2.885 (2) 171 (2)
C2—H2A⋯O1 0.95 2.31 2.930 (2) 122
C13—H13A⋯O1 0.98 2.46 3.151 (3) 127
C13A—H13D⋯N3 0.98 2.65 3.41 (3) 134
C5—H5ACg3ii 0.95 2.89 3.655 (4) 138
C13A—H13FCg2iii 0.98 2.80 3.612 (8) 141
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x-1, -y-1, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
The crystal packing of the title compound, viewed along the b axis. Dashed lines indicate weak inter­molecular N—H⋯N hydrogen bonding between the oxa­diazole ring and the amine group, forming dimers with an R22(8) ring motif.
[Figure 4]
Figure 4
A view of the packing along the b axis, showing the C—H⋯π contacts.
[Figure 5]
Figure 5
ππ contacts for the title compound.

Synthesis and crystallization

A mixture of 2-methyl furan-3-carb­oxy­lic acid hydrazide (1.40 g, 10.0 mmol) and phenyl iso­thio­cyanate (1.2 ml, 10.0 mmol) in absolute ethanol (20.0 ml) was refluxed for 2 h. The solid 4-phenyl-1-(2-methyl-3-furan) thio­semicarbazide obtained upon cooling was filtered off and washed with water and ether (50:50 v/v). A mixture of a methano­lic solution of 4-phenyl-1-(2-methyl-3-furan)­thio­semicarbazide (0.275 g, 1.00 mmol) and Mn(OAc)2·4H2O (0.251 g, 1.00 mmol) was stirred for 2 h. The clear orange-red solution obtained was filtered off and kept for crystallization, pale orange–red crystals of title compound suitable for X-ray analyses were obtained after eight days (Fig. 1[link]). Yield: 60%. m.p. 205°C. Analysis: found. C, 64.35; H, 4.30; N, 17.55%. Calculated for C13H11N3O2 (241.25): C, 64.71; H, 4.59; N, 17.41%. IR (KBr, cm−1): ν(N—H) 3244; ν(C=N) 1601; ν(N—N) 1061 s. 1H NMR (DMSO-d6), δ [p.p.m.] = 10.05 (s,1H, NH), 7.52–7.13 (m, 3H, furan), 7.42–6.90 (m, 5H, phen­yl), 2.46 (s, 3H, CH3). 13C NMR (DMSO-d6): δ [p.p.m.] = 163.2 (C7), 157.5 (C8); 139.7 (C12), 128.4 (C11), 126.5 (C9), 125.5 (C10) (furan C); 110.6–141.1 (phenyl C), 13.8 (C13).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All atoms of the furan ring are disordered over two positions with occupancies that refine to 0.902 (2) and 0.098 (2).

Table 2
Experimental details

Crystal data
Chemical formula C13H11N3O2
Mr 241.25
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 20.8964 (16), 5.9156 (3), 21.9821 (17)
β (°) 120.415 (10)
V3) 2343.4 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.39 × 0.17 × 0.15
 
Data collection
Diffractometer Agilent Xcalibur Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.814, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8528, 3895, 2403
Rint 0.021
(sin θ/λ)max−1) 0.760
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.167, 1.03
No. of reflections 3895
No. of parameters 188
No. of restraints 51
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.19
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

5-(2-Methylfuran-3-yl)-N-phenyl-1,3,4-oxadiazol-2-amine top
Crystal data top
C13H11N3O2F(000) = 1008
Mr = 241.25Dx = 1.368 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.8964 (16) ÅCell parameters from 1741 reflections
b = 5.9156 (3) Åθ = 4.4–31.5°
c = 21.9821 (17) ŵ = 0.10 mm1
β = 120.415 (10)°T = 173 K
V = 2343.4 (3) Å3Prismatic, pale orange-red
Z = 80.39 × 0.17 × 0.15 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3895 independent reflections
Radiation source: Enhance (Mo) X-ray Source2403 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.021
ω scansθmax = 32.7°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 3030
Tmin = 0.814, Tmax = 1.000k = 88
8528 measured reflectionsl = 3332
Refinement top
Refinement on F251 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.7747P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3895 reflectionsΔρmax = 0.21 e Å3
188 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.53261 (6)0.43941 (18)0.42073 (5)0.0470 (3)
N10.45640 (7)0.1226 (2)0.40325 (7)0.0506 (3)
H1N0.4489 (10)0.005 (3)0.4262 (9)0.057 (5)*
N20.55136 (7)0.2429 (2)0.51379 (6)0.0484 (3)
N30.60380 (7)0.4184 (2)0.53713 (7)0.0514 (3)
C10.40324 (8)0.1415 (3)0.33125 (7)0.0441 (3)
C20.39829 (11)0.3187 (3)0.28835 (9)0.0670 (5)
H2A0.43260.44040.30690.080*
C30.34293 (12)0.3180 (4)0.21804 (10)0.0761 (6)
H3A0.33990.43980.18850.091*
C40.29263 (10)0.1458 (4)0.19026 (9)0.0652 (5)
H4A0.25500.14740.14190.078*
C50.29707 (10)0.0287 (4)0.23293 (9)0.0629 (5)
H5A0.26190.14820.21420.075*
C60.35219 (9)0.0330 (3)0.30314 (8)0.0545 (4)
H6A0.35510.15600.33220.065*
C70.51143 (8)0.2623 (3)0.44590 (7)0.0424 (3)
C80.59135 (8)0.5285 (3)0.48257 (8)0.0465 (4)
O20.66884 (14)1.0275 (4)0.44789 (13)0.0586 (6)0.902 (2)
C90.63019 (9)0.7286 (3)0.48103 (9)0.0427 (4)0.902 (2)
C100.68975 (12)0.8339 (4)0.54232 (11)0.0531 (5)0.902 (2)
H10A0.71020.78620.58990.064*0.902 (2)
C110.71062 (11)1.0098 (4)0.51977 (10)0.0595 (5)0.902 (2)
H11A0.74941.11060.54940.071*0.902 (2)
C120.61913 (9)0.8524 (3)0.42467 (9)0.0477 (4)0.902 (2)
C130.56757 (15)0.8395 (5)0.34734 (11)0.0692 (7)0.902 (2)
H13A0.53250.71510.33670.104*0.902 (2)
H13B0.59590.81290.32360.104*0.902 (2)
H13C0.54020.98210.33060.104*0.902 (2)
O2A0.6546 (18)1.057 (4)0.4397 (12)0.0586 (6)0.098 (2)
C9A0.6013 (8)0.735 (3)0.4376 (7)0.0427 (4)0.098 (2)
C10A0.5807 (13)0.803 (3)0.3684 (9)0.0531 (5)0.098 (2)
H10B0.55220.71640.32680.064*0.098 (2)
C11A0.6069 (10)1.005 (3)0.3706 (8)0.0595 (5)0.098 (2)
H11B0.59501.09940.33130.071*0.098 (2)
C12A0.6552 (8)0.873 (3)0.4795 (7)0.0477 (4)0.098 (2)
C13A0.7071 (16)0.887 (5)0.5558 (9)0.0692 (7)0.098 (2)
H13D0.69460.77030.57980.104*0.098 (2)
H13E0.70351.03620.57300.104*0.098 (2)
H13F0.75780.86230.56560.104*0.098 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0482 (6)0.0443 (6)0.0459 (6)0.0052 (5)0.0218 (5)0.0039 (5)
N10.0484 (7)0.0478 (8)0.0391 (6)0.0095 (6)0.0100 (6)0.0062 (5)
N20.0426 (6)0.0444 (7)0.0432 (7)0.0068 (6)0.0107 (5)0.0049 (5)
N30.0432 (7)0.0462 (7)0.0517 (7)0.0071 (6)0.0142 (6)0.0022 (6)
C10.0402 (7)0.0474 (8)0.0375 (7)0.0003 (6)0.0143 (6)0.0014 (6)
C20.0646 (11)0.0627 (11)0.0479 (9)0.0138 (9)0.0096 (8)0.0120 (8)
C30.0753 (13)0.0787 (14)0.0491 (10)0.0088 (11)0.0130 (9)0.0186 (9)
C40.0603 (10)0.0847 (14)0.0358 (8)0.0021 (10)0.0133 (7)0.0004 (8)
C50.0600 (10)0.0728 (12)0.0442 (9)0.0170 (9)0.0178 (8)0.0097 (8)
C60.0565 (9)0.0570 (10)0.0412 (8)0.0096 (8)0.0184 (7)0.0001 (7)
C70.0405 (7)0.0390 (7)0.0428 (7)0.0014 (6)0.0175 (6)0.0042 (6)
C80.0381 (7)0.0442 (8)0.0529 (9)0.0039 (6)0.0199 (6)0.0035 (7)
O20.0619 (15)0.0533 (10)0.0601 (9)0.0143 (10)0.0305 (9)0.0024 (7)
C90.0386 (8)0.0426 (9)0.0437 (9)0.0037 (7)0.0185 (7)0.0017 (7)
C100.0490 (11)0.0551 (13)0.0472 (10)0.0105 (9)0.0185 (9)0.0030 (8)
C110.0592 (11)0.0577 (11)0.0534 (11)0.0206 (9)0.0224 (9)0.0110 (9)
C120.0473 (9)0.0465 (10)0.0488 (9)0.0075 (8)0.0240 (8)0.0018 (7)
C130.0665 (15)0.0825 (17)0.0459 (12)0.0067 (13)0.0193 (11)0.0064 (11)
O2A0.0619 (15)0.0533 (10)0.0601 (9)0.0143 (10)0.0305 (9)0.0024 (7)
C9A0.0386 (8)0.0426 (9)0.0437 (9)0.0037 (7)0.0185 (7)0.0017 (7)
C10A0.0490 (11)0.0551 (13)0.0472 (10)0.0105 (9)0.0185 (9)0.0030 (8)
C11A0.0592 (11)0.0577 (11)0.0534 (11)0.0206 (9)0.0224 (9)0.0110 (9)
C12A0.0473 (9)0.0465 (10)0.0488 (9)0.0075 (8)0.0240 (8)0.0018 (7)
C13A0.0665 (15)0.0825 (17)0.0459 (12)0.0067 (13)0.0193 (11)0.0064 (11)
Geometric parameters (Å, º) top
O1—C71.3592 (18)O2—C121.370 (3)
O1—C81.3938 (18)C9—C121.355 (2)
N1—C71.3388 (19)C9—C101.433 (2)
N1—C11.4040 (19)C10—C111.318 (3)
N1—H1N0.919 (19)C10—H10A0.9500
N2—C71.2947 (19)C11—H11A0.9500
N2—N31.4049 (18)C12—C131.484 (3)
N3—C81.270 (2)C13—H13A0.9800
C1—C21.379 (2)C13—H13B0.9800
C1—C61.385 (2)C13—H13C0.9800
C2—C31.384 (2)O2A—C11A1.363 (19)
C2—H2A0.9500O2A—C12A1.391 (16)
C3—C41.366 (3)C9A—C12A1.317 (14)
C3—H3A0.9500C9A—C10A1.415 (16)
C4—C51.366 (3)C10A—C11A1.304 (17)
C4—H4A0.9500C10A—H10B0.9500
C5—C61.382 (2)C11A—H11B0.9500
C5—H5A0.9500C12A—C13A1.468 (12)
C6—H6A0.9500C13A—H13D0.9800
C8—C91.446 (2)C13A—H13E0.9800
C8—C9A1.649 (15)C13A—H13F0.9800
O2—C111.369 (3)
C7—O1—C8101.65 (11)C10—C9—C8124.36 (16)
C7—N1—C1130.48 (14)C11—C10—C9106.53 (19)
C7—N1—H1N114.2 (11)C11—C10—H10A126.7
C1—N1—H1N114.9 (11)C9—C10—H10A126.7
C7—N2—N3106.47 (12)C10—C11—O2110.83 (18)
C8—N3—N2106.56 (12)C10—C11—H11A124.6
C2—C1—C6119.18 (15)O2—C11—H11A124.6
C2—C1—N1125.04 (15)C9—C12—O2108.78 (17)
C6—C1—N1115.78 (14)C9—C12—C13135.13 (18)
C1—C2—C3119.50 (18)O2—C12—C13116.09 (19)
C1—C2—H2A120.3C12—C13—H13A109.5
C3—C2—H2A120.3C12—C13—H13B109.5
C4—C3—C2121.35 (19)H13A—C13—H13B109.5
C4—C3—H3A119.3C12—C13—H13C109.5
C2—C3—H3A119.3H13A—C13—H13C109.5
C3—C4—C5119.16 (16)H13B—C13—H13C109.5
C3—C4—H4A120.4C11A—O2A—C12A107.1 (15)
C5—C4—H4A120.4C12A—C9A—C10A105.2 (13)
C4—C5—C6120.62 (17)C12A—C9A—C8111.3 (11)
C4—C5—H5A119.7C10A—C9A—C8142.6 (12)
C6—C5—H5A119.7C11A—C10A—C9A109.1 (14)
C5—C6—C1120.18 (17)C11A—C10A—H10B125.4
C5—C6—H6A119.9C9A—C10A—H10B125.4
C1—C6—H6A119.9C10A—C11A—O2A107.7 (14)
N2—C7—N1125.19 (14)C10A—C11A—H11B126.2
N2—C7—O1112.65 (13)O2A—C11A—H11B126.2
N1—C7—O1122.14 (13)C9A—C12A—O2A108.2 (13)
N3—C8—O1112.66 (14)C9A—C12A—C13A135.1 (16)
N3—C8—C9126.35 (15)O2A—C12A—C13A116.3 (16)
O1—C8—C9120.97 (14)C12A—C13A—H13D109.5
N3—C8—C9A156.6 (5)C12A—C13A—H13E109.5
O1—C8—C9A90.7 (5)H13D—C13A—H13E109.5
C11—O2—C12107.00 (19)C12A—C13A—H13F109.5
C12—C9—C10106.85 (16)H13D—C13A—H13F109.5
C12—C9—C8128.78 (16)H13E—C13A—H13F109.5
C7—N2—N3—C80.33 (17)O1—C8—C9—C10178.34 (18)
C7—N1—C1—C20.8 (3)C12—C9—C10—C110.2 (2)
C7—N1—C1—C6178.43 (16)C8—C9—C10—C11179.94 (18)
C6—C1—C2—C30.5 (3)C9—C10—C11—O20.1 (3)
N1—C1—C2—C3179.69 (18)C12—O2—C11—C100.1 (3)
C1—C2—C3—C40.4 (3)C10—C9—C12—O20.3 (2)
C2—C3—C4—C50.2 (3)C8—C9—C12—O2179.9 (2)
C3—C4—C5—C60.8 (3)C10—C9—C12—C13179.8 (3)
C4—C5—C6—C10.7 (3)C8—C9—C12—C130.0 (4)
C2—C1—C6—C50.0 (3)C11—O2—C12—C90.2 (3)
N1—C1—C6—C5179.21 (16)C11—O2—C12—C13179.9 (2)
N3—N2—C7—N1177.98 (15)N3—C8—C9A—C12A4 (2)
N3—N2—C7—O10.07 (17)O1—C8—C9A—C12A179.1 (12)
C1—N1—C7—N2170.37 (16)N3—C8—C9A—C10A171 (2)
C1—N1—C7—O111.8 (3)O1—C8—C9A—C10A14 (3)
C8—O1—C7—N20.19 (16)C12A—C9A—C10A—C11A16 (3)
C8—O1—C7—N1178.30 (14)C8—C9A—C10A—C11A176.6 (18)
N2—N3—C8—O10.47 (17)C9A—C10A—C11A—O2A10 (3)
N2—N3—C8—C9177.97 (15)C12A—O2A—C11A—C10A0 (4)
N2—N3—C8—C9A173.9 (14)C10A—C9A—C12A—O2A16 (3)
C7—O1—C8—N30.41 (17)C8—C9A—C12A—O2A173 (2)
C7—O1—C8—C9178.11 (14)C10A—C9A—C12A—C13A172 (3)
C7—O1—C8—C9A177.3 (6)C8—C9A—C12A—C13A1 (3)
N3—C8—C9—C12179.81 (17)C11A—O2A—C12A—C9A10 (3)
O1—C8—C9—C121.5 (3)C11A—O2A—C12A—C13A176 (3)
N3—C8—C9—C100.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg3, Cg2 are the centroid of benzene (C1–C6) and furan (O2/C9–C12) rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.92 (2)1.97 (2)2.885 (2)171 (2)
C2—H2A···O10.952.312.930 (2)122
C13—H13A···O10.982.463.151 (3)127
C13A—H13D···N30.982.653.41 (3)134
C5—H5A···Cg3ii0.952.893.655 (4)138
C13A—H13F···Cg2iii0.982.803.612 (8)141
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y1, z1/2; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

MKB is thankful to the Science and Engineering Research Board, India, for the award of a project (No. SB/EMEQ-150/2014). JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAboraia, A. S., Abdel-Rahman, H. M., Mahfouz, N. H. & El-Gendy, M. A. (2006). Bioorg. Med. Chem. 14, 1236–1246.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBharty, M. K., Bharti, A., Dani, R. K., Dulare, R., Bharati, P. & Singh, N. K. (2012). J. Mol. Struct. 1011, 34–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationBharty, M. K., Dani, R. K., Nath, P., Bharti, A., Singh, N. K., Prakash, O., Singh, R. K. & Butcher, R. J. (2015). Polyhedron, 98, 84–95.  Web of Science CSD CrossRef CAS Google Scholar
First citationDani, R. K., Bharty, M. K., Kushawaha, S. K., Prakash, O., Sharma, V. K., Kharwar, R. N., Singh, R. K. & Singh, N. K. (2014). Polyhedron, 81, 261–272.  Web of Science CSD CrossRef CAS Google Scholar
First citationDu, M. & Zhao, X.-J. (2004). J. Mol. Struct. 694, 235–240.  Web of Science CSD CrossRef CAS Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFoks, H., Mieczkowska, J., Janowiec, M., Zwolska, Z. & Andrzejczyk, Z. (2002). Chem. Heterocycl. Compd. 38, 810–816.  CrossRef CAS Google Scholar
First citationForoumadi, A., Mirzaei, M. & Shafiee, A. (2001). Pharmazie, 56, 610–612.  Web of Science PubMed CAS Google Scholar
First citationJasinski, J. P., Bharty, M. K., Singh, N. K., Kushwaha, S. K. & Butcher, R. J. (2011). J. Chem. Crystallogr. 41, 6–11.  Web of Science CSD CrossRef CAS Google Scholar
First citationJedlovská, E. & Leško, J. (1994). Synth. Commun. 24, 1879–1885.  Google Scholar
First citationLuo, Y., Liu, Z.-J., Chen, G., Shi, J., Li, J.-R. & Zhu, H.-L. (2016). Med. Chem. Commun. 7, 263–271.  Web of Science CrossRef CAS Google Scholar
First citationOmar, F. A., Mahfouz, N. M. & Rahman, M. A. (1996). Eur. J. Med. Chem. 31, 819–825.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPaswan, S., Bharty, M. K., Kumari, S., Gupta, S. K. & Singh, N. K. (2015). Acta Cryst. E71, o880–o881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReid, J. R. & Heindel, N. D. (1976). J. Heterocycl. Chem. 13, 925–926.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, Y. T., Tang, G. M., Ma, W. Y. & Wan, W. Z. (2007). Polyhedron, 26, 782–790.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds