organic compounds
5-(2-Methylfuran-3-yl)-N-phenyl-1,3,4-oxadiazol-2-amine
aDepartment of Chemistry, Banaras Hindu University, Varanasi 221 005, India, bSchool of Studies in Chemistry, Jiwaji University, Gwalior 47011, India, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: manoj_vns2005@yahoo.co.in
In the title compound, C13H11N3O2, the furan ring is disordered over two orientations, with occupancies of 0.902 (2) and 0.098 (2). The dihedral angles between the central oxadiazole ring and the pendant phenyl ring and the furan ring (major disorder component) are 10.12 (11) and 1.76 (15)°, respectively. A short intramolecular C—H⋯O contact generates an S(6) ring. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds generate R22(8) loops. The dimers are linked by C—H⋯π and π–π interactions [range of centroid–centroid distances = 3.301 (7)–3.689 (1) Å], generating a three-dimensional network.
Keywords: crystal structure; cyclized oxadiazole derivative; hydrogen bonding; C—H⋯π interactions; π–π interactions.
CCDC reference: 1506092
Structure description
The coordination chemistry of nitrogen–oxygen containing heterocyclic ligands such as 1,3,4-oxadiazoles and their derivatives containing the HNCO moiety is an emerging and rapidly developing area of research (Wang et al., 2007; Foroumadi et al., 2001; Bharty et al., 2012). 1,3,4-Oxadiazole derivatives have also been the subject of extensive study in the recent years because of their diverse biological activities (Luo et al., 2016; Aboraia et al., 2006; El-Emam et al., 2004; Bharty et al., 2015). These molecules can act as spacers in coordination compounds, resulting in intermolecular cooperative interactions (Du & Zhao, 2004). In the presence of a base, the of acyldithiocarbazate to the corresponding 1,3,4-oxadiazole is reported (Foks et al., 2002). Several other methods are available for the synthesis of oxadiazoles from acyclic precursors. These include oxidative of acylhydrazones (Jedlovská & Leško, 1994) and acylthiosemicarbazides (Omar et al., 1996, Paswan et al., 2015). It is reported that in the presence of a strong acid, an N-acylhydrazine carbodithioate is converted to a thiadiazole whereas in the presence of weak acid or base or on complexation they can be cyclized to the corresponding oxadiazole (Reid & Heindel, 1976; Jasinski et al., 2011). Previously, we have reported 1,3,4-thiadiazoles that were prepared by the reaction of a substituted thiosemicarbazide with manganese(II) nitrate, in which the substituted thiosemicarbazide cyclized to the corresponding thiadiazole via loss of H2O (Dani et al., 2014). However, in the present case, the substituted thiosemicarbazide is cyclized to (2-methyl)-5-furan-2-yl-[1,3,4]-oxadiazole-2-yl)phenylamine in the presence of manganese(II) acetate in this case with loss of H2S (Fig. 1). Thus, the MnII acetate behaves here as a weak acid.
In the title compound (Fig. 2), the mean plane of the central oxadiazole ring (O1/C7/N2/N3/C8) subtends dihedral angles of 10.12 (11) and 1.76 (15)° with the furan (O2/C12/C9/C10/C11) and phenyl rings (C1–C6), respectively. The furan and phenyl rings are inclined to one another at an angle of 9.92 (14)°. Intramolecular C2—H2A⋯O1 and C13—H13A⋯O1 hydrogen bonds generate S(6) rings, contributing to the planarity of the whole molecule. The C—N bond lengths [N2—C7 1.2947 (19) and N3—C8 1.270 (2) Å] are similar to the standard C=N distance of 1.28 Å. The C—O and C—N distances found within the oxadiazole ring are intermediate between single and double bonds, suggesting considerable delocalization in this ring. Deviation of the bond angles from 120° in the oxadiazole ring is a common feature in five-membered rings.
In the crystal, pairs of intermolecular N—H⋯N hydrogen bonds between the oxadiazole ring and the amine group form dimers with an R22(8) ring motif (Fig. 3, Table 1). Molecules are further linked by two C—H⋯π interactions (Fig. 4 and Table 1) involving the (O2/C9–C12) and (C1–C6) rings. In addition, weak π–π stacking interactions [Cg1⋯Cg1(−x, −y, 1 − z) = 3.301 (7) Å; Cg1⋯Cg2(x, −1 + y, z) = 3.612 (5) Å; Cg2⋯Cg2 (1/2 − x, 1/2 − y, 1 − z) = 3.689 (1) Å; Cg1, Cg2 and Cg3 are the centroids of the O1/C7–C8/N2–N3, O2/C9–C12 and C1–C6 rings respectively] are also present and influence the crystal packing (Fig. 5). These contacts lead to a three-dimensional structure.
Synthesis and crystallization
A mixture of 2-methyl furan-3-carboxylic acid hydrazide (1.40 g, 10.0 mmol) and phenyl isothiocyanate (1.2 ml, 10.0 mmol) in absolute ethanol (20.0 ml) was refluxed for 2 h. The solid 4-phenyl-1-(2-methyl-3-furan) thiosemicarbazide obtained upon cooling was filtered off and washed with water and ether (50:50 v/v). A mixture of a methanolic solution of 4-phenyl-1-(2-methyl-3-furan)thiosemicarbazide (0.275 g, 1.00 mmol) and Mn(OAc)2·4H2O (0.251 g, 1.00 mmol) was stirred for 2 h. The clear orange-red solution obtained was filtered off and kept for crystallization, pale orange–red crystals of title compound suitable for X-ray analyses were obtained after eight days (Fig. 1). Yield: 60%. m.p. 205°C. Analysis: found. C, 64.35; H, 4.30; N, 17.55%. Calculated for C13H11N3O2 (241.25): C, 64.71; H, 4.59; N, 17.41%. IR (KBr, cm−1): ν(N—H) 3244; ν(C=N) 1601; ν(N—N) 1061 s. 1H NMR (DMSO-d6), δ [p.p.m.] = 10.05 (s,1H, NH), 7.52–7.13 (m, 3H, furan), 7.42–6.90 (m, 5H, phenyl), 2.46 (s, 3H, CH3). 13C NMR (DMSO-d6): δ [p.p.m.] = 163.2 (C7), 157.5 (C8); 139.7 (C12), 128.4 (C11), 126.5 (C9), 125.5 (C10) (furan C); 110.6–141.1 (phenyl C), 13.8 (C13).
Refinement
Crystal data, data collection and structure . All atoms of the furan ring are disordered over two positions with occupancies that refine to 0.902 (2) and 0.098 (2).
details are summarized in Table 2
|
Structural data
CCDC reference: 1506092
https://doi.org/10.1107/S2414314616017247/sj4067sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616017247/sj4067Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616017247/sj4067Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C13H11N3O2 | F(000) = 1008 |
Mr = 241.25 | Dx = 1.368 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 20.8964 (16) Å | Cell parameters from 1741 reflections |
b = 5.9156 (3) Å | θ = 4.4–31.5° |
c = 21.9821 (17) Å | µ = 0.10 mm−1 |
β = 120.415 (10)° | T = 173 K |
V = 2343.4 (3) Å3 | Prismatic, pale orange-red |
Z = 8 | 0.39 × 0.17 × 0.15 mm |
Agilent Xcalibur Eos Gemini diffractometer | 3895 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2403 reflections with I > 2σ(I) |
Detector resolution: 16.0416 pixels mm-1 | Rint = 0.021 |
ω scans | θmax = 32.7°, θmin = 3.6° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −30→30 |
Tmin = 0.814, Tmax = 1.000 | k = −8→8 |
8528 measured reflections | l = −33→32 |
Refinement on F2 | 51 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.057 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.167 | w = 1/[σ2(Fo2) + (0.0691P)2 + 0.7747P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3895 reflections | Δρmax = 0.21 e Å−3 |
188 parameters | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.53261 (6) | 0.43941 (18) | 0.42073 (5) | 0.0470 (3) | |
N1 | 0.45640 (7) | 0.1226 (2) | 0.40325 (7) | 0.0506 (3) | |
H1N | 0.4489 (10) | 0.005 (3) | 0.4262 (9) | 0.057 (5)* | |
N2 | 0.55136 (7) | 0.2429 (2) | 0.51379 (6) | 0.0484 (3) | |
N3 | 0.60380 (7) | 0.4184 (2) | 0.53713 (7) | 0.0514 (3) | |
C1 | 0.40324 (8) | 0.1415 (3) | 0.33125 (7) | 0.0441 (3) | |
C2 | 0.39829 (11) | 0.3187 (3) | 0.28835 (9) | 0.0670 (5) | |
H2A | 0.4326 | 0.4404 | 0.3069 | 0.080* | |
C3 | 0.34293 (12) | 0.3180 (4) | 0.21804 (10) | 0.0761 (6) | |
H3A | 0.3399 | 0.4398 | 0.1885 | 0.091* | |
C4 | 0.29263 (10) | 0.1458 (4) | 0.19026 (9) | 0.0652 (5) | |
H4A | 0.2550 | 0.1474 | 0.1419 | 0.078* | |
C5 | 0.29707 (10) | −0.0287 (4) | 0.23293 (9) | 0.0629 (5) | |
H5A | 0.2619 | −0.1482 | 0.2142 | 0.075* | |
C6 | 0.35219 (9) | −0.0330 (3) | 0.30314 (8) | 0.0545 (4) | |
H6A | 0.3551 | −0.1560 | 0.3322 | 0.065* | |
C7 | 0.51143 (8) | 0.2623 (3) | 0.44590 (7) | 0.0424 (3) | |
C8 | 0.59135 (8) | 0.5285 (3) | 0.48257 (8) | 0.0465 (4) | |
O2 | 0.66884 (14) | 1.0275 (4) | 0.44789 (13) | 0.0586 (6) | 0.902 (2) |
C9 | 0.63019 (9) | 0.7286 (3) | 0.48103 (9) | 0.0427 (4) | 0.902 (2) |
C10 | 0.68975 (12) | 0.8339 (4) | 0.54232 (11) | 0.0531 (5) | 0.902 (2) |
H10A | 0.7102 | 0.7862 | 0.5899 | 0.064* | 0.902 (2) |
C11 | 0.71062 (11) | 1.0098 (4) | 0.51977 (10) | 0.0595 (5) | 0.902 (2) |
H11A | 0.7494 | 1.1106 | 0.5494 | 0.071* | 0.902 (2) |
C12 | 0.61913 (9) | 0.8524 (3) | 0.42467 (9) | 0.0477 (4) | 0.902 (2) |
C13 | 0.56757 (15) | 0.8395 (5) | 0.34734 (11) | 0.0692 (7) | 0.902 (2) |
H13A | 0.5325 | 0.7151 | 0.3367 | 0.104* | 0.902 (2) |
H13B | 0.5959 | 0.8129 | 0.3236 | 0.104* | 0.902 (2) |
H13C | 0.5402 | 0.9821 | 0.3306 | 0.104* | 0.902 (2) |
O2A | 0.6546 (18) | 1.057 (4) | 0.4397 (12) | 0.0586 (6) | 0.098 (2) |
C9A | 0.6013 (8) | 0.735 (3) | 0.4376 (7) | 0.0427 (4) | 0.098 (2) |
C10A | 0.5807 (13) | 0.803 (3) | 0.3684 (9) | 0.0531 (5) | 0.098 (2) |
H10B | 0.5522 | 0.7164 | 0.3268 | 0.064* | 0.098 (2) |
C11A | 0.6069 (10) | 1.005 (3) | 0.3706 (8) | 0.0595 (5) | 0.098 (2) |
H11B | 0.5950 | 1.0994 | 0.3313 | 0.071* | 0.098 (2) |
C12A | 0.6552 (8) | 0.873 (3) | 0.4795 (7) | 0.0477 (4) | 0.098 (2) |
C13A | 0.7071 (16) | 0.887 (5) | 0.5558 (9) | 0.0692 (7) | 0.098 (2) |
H13D | 0.6946 | 0.7703 | 0.5798 | 0.104* | 0.098 (2) |
H13E | 0.7035 | 1.0362 | 0.5730 | 0.104* | 0.098 (2) |
H13F | 0.7578 | 0.8623 | 0.5656 | 0.104* | 0.098 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0482 (6) | 0.0443 (6) | 0.0459 (6) | −0.0052 (5) | 0.0218 (5) | 0.0039 (5) |
N1 | 0.0484 (7) | 0.0478 (8) | 0.0391 (6) | −0.0095 (6) | 0.0100 (6) | 0.0062 (5) |
N2 | 0.0426 (6) | 0.0444 (7) | 0.0432 (7) | −0.0068 (6) | 0.0107 (5) | 0.0049 (5) |
N3 | 0.0432 (7) | 0.0462 (7) | 0.0517 (7) | −0.0071 (6) | 0.0142 (6) | 0.0022 (6) |
C1 | 0.0402 (7) | 0.0474 (8) | 0.0375 (7) | −0.0003 (6) | 0.0143 (6) | 0.0014 (6) |
C2 | 0.0646 (11) | 0.0627 (11) | 0.0479 (9) | −0.0138 (9) | 0.0096 (8) | 0.0120 (8) |
C3 | 0.0753 (13) | 0.0787 (14) | 0.0491 (10) | −0.0088 (11) | 0.0130 (9) | 0.0186 (9) |
C4 | 0.0603 (10) | 0.0847 (14) | 0.0358 (8) | −0.0021 (10) | 0.0133 (7) | 0.0004 (8) |
C5 | 0.0600 (10) | 0.0728 (12) | 0.0442 (9) | −0.0170 (9) | 0.0178 (8) | −0.0097 (8) |
C6 | 0.0565 (9) | 0.0570 (10) | 0.0412 (8) | −0.0096 (8) | 0.0184 (7) | 0.0001 (7) |
C7 | 0.0405 (7) | 0.0390 (7) | 0.0428 (7) | −0.0014 (6) | 0.0175 (6) | 0.0042 (6) |
C8 | 0.0381 (7) | 0.0442 (8) | 0.0529 (9) | −0.0039 (6) | 0.0199 (6) | −0.0035 (7) |
O2 | 0.0619 (15) | 0.0533 (10) | 0.0601 (9) | −0.0143 (10) | 0.0305 (9) | 0.0024 (7) |
C9 | 0.0386 (8) | 0.0426 (9) | 0.0437 (9) | −0.0037 (7) | 0.0185 (7) | −0.0017 (7) |
C10 | 0.0490 (11) | 0.0551 (13) | 0.0472 (10) | −0.0105 (9) | 0.0185 (9) | −0.0030 (8) |
C11 | 0.0592 (11) | 0.0577 (11) | 0.0534 (11) | −0.0206 (9) | 0.0224 (9) | −0.0110 (9) |
C12 | 0.0473 (9) | 0.0465 (10) | 0.0488 (9) | −0.0075 (8) | 0.0240 (8) | −0.0018 (7) |
C13 | 0.0665 (15) | 0.0825 (17) | 0.0459 (12) | −0.0067 (13) | 0.0193 (11) | 0.0064 (11) |
O2A | 0.0619 (15) | 0.0533 (10) | 0.0601 (9) | −0.0143 (10) | 0.0305 (9) | 0.0024 (7) |
C9A | 0.0386 (8) | 0.0426 (9) | 0.0437 (9) | −0.0037 (7) | 0.0185 (7) | −0.0017 (7) |
C10A | 0.0490 (11) | 0.0551 (13) | 0.0472 (10) | −0.0105 (9) | 0.0185 (9) | −0.0030 (8) |
C11A | 0.0592 (11) | 0.0577 (11) | 0.0534 (11) | −0.0206 (9) | 0.0224 (9) | −0.0110 (9) |
C12A | 0.0473 (9) | 0.0465 (10) | 0.0488 (9) | −0.0075 (8) | 0.0240 (8) | −0.0018 (7) |
C13A | 0.0665 (15) | 0.0825 (17) | 0.0459 (12) | −0.0067 (13) | 0.0193 (11) | 0.0064 (11) |
O1—C7 | 1.3592 (18) | O2—C12 | 1.370 (3) |
O1—C8 | 1.3938 (18) | C9—C12 | 1.355 (2) |
N1—C7 | 1.3388 (19) | C9—C10 | 1.433 (2) |
N1—C1 | 1.4040 (19) | C10—C11 | 1.318 (3) |
N1—H1N | 0.919 (19) | C10—H10A | 0.9500 |
N2—C7 | 1.2947 (19) | C11—H11A | 0.9500 |
N2—N3 | 1.4049 (18) | C12—C13 | 1.484 (3) |
N3—C8 | 1.270 (2) | C13—H13A | 0.9800 |
C1—C2 | 1.379 (2) | C13—H13B | 0.9800 |
C1—C6 | 1.385 (2) | C13—H13C | 0.9800 |
C2—C3 | 1.384 (2) | O2A—C11A | 1.363 (19) |
C2—H2A | 0.9500 | O2A—C12A | 1.391 (16) |
C3—C4 | 1.366 (3) | C9A—C12A | 1.317 (14) |
C3—H3A | 0.9500 | C9A—C10A | 1.415 (16) |
C4—C5 | 1.366 (3) | C10A—C11A | 1.304 (17) |
C4—H4A | 0.9500 | C10A—H10B | 0.9500 |
C5—C6 | 1.382 (2) | C11A—H11B | 0.9500 |
C5—H5A | 0.9500 | C12A—C13A | 1.468 (12) |
C6—H6A | 0.9500 | C13A—H13D | 0.9800 |
C8—C9 | 1.446 (2) | C13A—H13E | 0.9800 |
C8—C9A | 1.649 (15) | C13A—H13F | 0.9800 |
O2—C11 | 1.369 (3) | ||
C7—O1—C8 | 101.65 (11) | C10—C9—C8 | 124.36 (16) |
C7—N1—C1 | 130.48 (14) | C11—C10—C9 | 106.53 (19) |
C7—N1—H1N | 114.2 (11) | C11—C10—H10A | 126.7 |
C1—N1—H1N | 114.9 (11) | C9—C10—H10A | 126.7 |
C7—N2—N3 | 106.47 (12) | C10—C11—O2 | 110.83 (18) |
C8—N3—N2 | 106.56 (12) | C10—C11—H11A | 124.6 |
C2—C1—C6 | 119.18 (15) | O2—C11—H11A | 124.6 |
C2—C1—N1 | 125.04 (15) | C9—C12—O2 | 108.78 (17) |
C6—C1—N1 | 115.78 (14) | C9—C12—C13 | 135.13 (18) |
C1—C2—C3 | 119.50 (18) | O2—C12—C13 | 116.09 (19) |
C1—C2—H2A | 120.3 | C12—C13—H13A | 109.5 |
C3—C2—H2A | 120.3 | C12—C13—H13B | 109.5 |
C4—C3—C2 | 121.35 (19) | H13A—C13—H13B | 109.5 |
C4—C3—H3A | 119.3 | C12—C13—H13C | 109.5 |
C2—C3—H3A | 119.3 | H13A—C13—H13C | 109.5 |
C3—C4—C5 | 119.16 (16) | H13B—C13—H13C | 109.5 |
C3—C4—H4A | 120.4 | C11A—O2A—C12A | 107.1 (15) |
C5—C4—H4A | 120.4 | C12A—C9A—C10A | 105.2 (13) |
C4—C5—C6 | 120.62 (17) | C12A—C9A—C8 | 111.3 (11) |
C4—C5—H5A | 119.7 | C10A—C9A—C8 | 142.6 (12) |
C6—C5—H5A | 119.7 | C11A—C10A—C9A | 109.1 (14) |
C5—C6—C1 | 120.18 (17) | C11A—C10A—H10B | 125.4 |
C5—C6—H6A | 119.9 | C9A—C10A—H10B | 125.4 |
C1—C6—H6A | 119.9 | C10A—C11A—O2A | 107.7 (14) |
N2—C7—N1 | 125.19 (14) | C10A—C11A—H11B | 126.2 |
N2—C7—O1 | 112.65 (13) | O2A—C11A—H11B | 126.2 |
N1—C7—O1 | 122.14 (13) | C9A—C12A—O2A | 108.2 (13) |
N3—C8—O1 | 112.66 (14) | C9A—C12A—C13A | 135.1 (16) |
N3—C8—C9 | 126.35 (15) | O2A—C12A—C13A | 116.3 (16) |
O1—C8—C9 | 120.97 (14) | C12A—C13A—H13D | 109.5 |
N3—C8—C9A | 156.6 (5) | C12A—C13A—H13E | 109.5 |
O1—C8—C9A | 90.7 (5) | H13D—C13A—H13E | 109.5 |
C11—O2—C12 | 107.00 (19) | C12A—C13A—H13F | 109.5 |
C12—C9—C10 | 106.85 (16) | H13D—C13A—H13F | 109.5 |
C12—C9—C8 | 128.78 (16) | H13E—C13A—H13F | 109.5 |
C7—N2—N3—C8 | 0.33 (17) | O1—C8—C9—C10 | 178.34 (18) |
C7—N1—C1—C2 | 0.8 (3) | C12—C9—C10—C11 | −0.2 (2) |
C7—N1—C1—C6 | −178.43 (16) | C8—C9—C10—C11 | 179.94 (18) |
C6—C1—C2—C3 | −0.5 (3) | C9—C10—C11—O2 | 0.1 (3) |
N1—C1—C2—C3 | −179.69 (18) | C12—O2—C11—C10 | 0.1 (3) |
C1—C2—C3—C4 | 0.4 (3) | C10—C9—C12—O2 | 0.3 (2) |
C2—C3—C4—C5 | 0.2 (3) | C8—C9—C12—O2 | −179.9 (2) |
C3—C4—C5—C6 | −0.8 (3) | C10—C9—C12—C13 | −179.8 (3) |
C4—C5—C6—C1 | 0.7 (3) | C8—C9—C12—C13 | 0.0 (4) |
C2—C1—C6—C5 | 0.0 (3) | C11—O2—C12—C9 | −0.2 (3) |
N1—C1—C6—C5 | 179.21 (16) | C11—O2—C12—C13 | 179.9 (2) |
N3—N2—C7—N1 | 177.98 (15) | N3—C8—C9A—C12A | 4 (2) |
N3—N2—C7—O1 | −0.07 (17) | O1—C8—C9A—C12A | 179.1 (12) |
C1—N1—C7—N2 | 170.37 (16) | N3—C8—C9A—C10A | 171 (2) |
C1—N1—C7—O1 | −11.8 (3) | O1—C8—C9A—C10A | −14 (3) |
C8—O1—C7—N2 | −0.19 (16) | C12A—C9A—C10A—C11A | −16 (3) |
C8—O1—C7—N1 | −178.30 (14) | C8—C9A—C10A—C11A | 176.6 (18) |
N2—N3—C8—O1 | −0.47 (17) | C9A—C10A—C11A—O2A | 10 (3) |
N2—N3—C8—C9 | 177.97 (15) | C12A—O2A—C11A—C10A | 0 (4) |
N2—N3—C8—C9A | 173.9 (14) | C10A—C9A—C12A—O2A | 16 (3) |
C7—O1—C8—N3 | 0.41 (17) | C8—C9A—C12A—O2A | −173 (2) |
C7—O1—C8—C9 | −178.11 (14) | C10A—C9A—C12A—C13A | −172 (3) |
C7—O1—C8—C9A | −177.3 (6) | C8—C9A—C12A—C13A | −1 (3) |
N3—C8—C9—C12 | −179.81 (17) | C11A—O2A—C12A—C9A | −10 (3) |
O1—C8—C9—C12 | −1.5 (3) | C11A—O2A—C12A—C13A | 176 (3) |
N3—C8—C9—C10 | 0.0 (3) |
Cg3, Cg2 are the centroid of benzene (C1–C6) and furan (O2/C9–C12) rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N2i | 0.92 (2) | 1.97 (2) | 2.885 (2) | 171 (2) |
C2—H2A···O1 | 0.95 | 2.31 | 2.930 (2) | 122 |
C13—H13A···O1 | 0.98 | 2.46 | 3.151 (3) | 127 |
C13A—H13D···N3 | 0.98 | 2.65 | 3.41 (3) | 134 |
C5—H5A···Cg3ii | 0.95 | 2.89 | 3.655 (4) | 138 |
C13A—H13F···Cg2iii | 0.98 | 2.80 | 3.612 (8) | 141 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, −y−1, z−1/2; (iii) −x+1/2, −y+1/2, −z+1. |
Acknowledgements
MKB is thankful to the Science and Engineering Research Board, India, for the award of a project (No. SB/EMEQ-150/2014). JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Aboraia, A. S., Abdel-Rahman, H. M., Mahfouz, N. H. & El-Gendy, M. A. (2006). Bioorg. Med. Chem. 14, 1236–1246. Web of Science CrossRef PubMed CAS Google Scholar
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Bharty, M. K., Bharti, A., Dani, R. K., Dulare, R., Bharati, P. & Singh, N. K. (2012). J. Mol. Struct. 1011, 34–41. Web of Science CSD CrossRef CAS Google Scholar
Bharty, M. K., Dani, R. K., Nath, P., Bharti, A., Singh, N. K., Prakash, O., Singh, R. K. & Butcher, R. J. (2015). Polyhedron, 98, 84–95. Web of Science CSD CrossRef CAS Google Scholar
Dani, R. K., Bharty, M. K., Kushawaha, S. K., Prakash, O., Sharma, V. K., Kharwar, R. N., Singh, R. K. & Singh, N. K. (2014). Polyhedron, 81, 261–272. Web of Science CSD CrossRef CAS Google Scholar
Du, M. & Zhao, X.-J. (2004). J. Mol. Struct. 694, 235–240. Web of Science CSD CrossRef CAS Google Scholar
El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113. Web of Science CrossRef PubMed CAS Google Scholar
Foks, H., Mieczkowska, J., Janowiec, M., Zwolska, Z. & Andrzejczyk, Z. (2002). Chem. Heterocycl. Compd. 38, 810–816. CrossRef CAS Google Scholar
Foroumadi, A., Mirzaei, M. & Shafiee, A. (2001). Pharmazie, 56, 610–612. Web of Science PubMed CAS Google Scholar
Jasinski, J. P., Bharty, M. K., Singh, N. K., Kushwaha, S. K. & Butcher, R. J. (2011). J. Chem. Crystallogr. 41, 6–11. Web of Science CSD CrossRef CAS Google Scholar
Jedlovská, E. & Leško, J. (1994). Synth. Commun. 24, 1879–1885. Google Scholar
Luo, Y., Liu, Z.-J., Chen, G., Shi, J., Li, J.-R. & Zhu, H.-L. (2016). Med. Chem. Commun. 7, 263–271. Web of Science CrossRef CAS Google Scholar
Omar, F. A., Mahfouz, N. M. & Rahman, M. A. (1996). Eur. J. Med. Chem. 31, 819–825. CrossRef CAS PubMed Web of Science Google Scholar
Paswan, S., Bharty, M. K., Kumari, S., Gupta, S. K. & Singh, N. K. (2015). Acta Cryst. E71, o880–o881. Web of Science CSD CrossRef IUCr Journals Google Scholar
Reid, J. R. & Heindel, N. D. (1976). J. Heterocycl. Chem. 13, 925–926. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wang, Y. T., Tang, G. M., Ma, W. Y. & Wan, W. Z. (2007). Polyhedron, 26, 782–790. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.