metal-organic compounds
Poly[butane-1,4-diammonium [tri-μ-oxalato-dimanganese(II)] hexahydrate]
aInternational Institute for Carbon-Neutral Energy Research, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan, and bDivision of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
*Correspondence e-mail: kitagawa@kuchem.kyoto-u.ac.jp
In the title coordination polymer, {(C4H14N2)[Mn2(C2O4)3]·6H2O}n, the MnII ions are octahedrally coordinated by the oxalate ligands to form a two-dimensional honeycomb-like network. This anionic framework incorporates the centrosymmetric butane-1,4-diammonium ions as counter-cations. The two-dimensional network is slightly distorted as a result of the vertically incorporated cations. Three kinds of water molecules are located in an interlayer space, forming hydrogen bonds with the ammonium cations and the oxalate ligands of the framework.
Keywords: crystal structure; manganese; coordination polymer; oxalate.
CCDC reference: 1509829
Structure description
Oxalate-bridged infinite networks show various functionalities, such as ferromagnetism (Tamaki et al., 1992), high proton conduction (Sadakiyo et al., 2009) and selective adsorption properties (Sadakiyo et al., 2011). In this study, the of a new oxalato-bridged manganese(II) two-dimensional network is reported.
There is one crystallographically independent Mn atom in the II ions. O atoms of the oxalate ligands coordinate the MnII cations in a slightly distorted octahedral geometry, forming a honeycomb-like two-dimensional network of [Mn2(C2O4)3]2− units which in turn incorporate the butane-1,4-diammonium counter-cations, (Fig. 1). These cations lie on inversion centres located at the midpoint of the C4—C4iv bond [symmetry code: (iv) −x, −y + 1, −z + 2]. The two-dimensional sheets are stacked to form a layered structure (Fig. 2). In the interlayer space, there are three independent water molecules (O3, O7 and O9) that form hydrogen bonds (Table 1) with both the ammonium substituents of the cation and the O atoms of the oxalate ligands (Fig. 3). The layer structure is distorted to accommodate the presence of the vertically incorporated cations, while other oxalate-bridged two-dimensional coordination polymers generally form a flat layer structure (Clemente-León et al., 1997).
and the oxalate ligands form bridges between the MnSynthesis and crystallization
A mixture of manganese (II) acetate tetrahydrate (10 mmol, 2451 mg), oxalic acid dihydrate (20 mmol, 2521 mg), 1,4-diaminobutane (10 mmol, 1.0 ml), and distilled water (550 mmol, 10 ml) was heated in a 50 ml Teflon-lined autoclave. The reaction temperature was controlled using a programmable oven. The mixture was kept at 403 K for 24 h. After that, it was cooled slowly to 298 K over 168 h. Colourless crystals were collected by filtration (several crystals were stored in the mother liquid for structural analysis). After washing the samples with distilled water, the samples were dried under air (yield: 2324 mg, 81%). Elemental analysis calculated for C10H18Mn2N2O14 (%): C 24.02, H 3.63, N 5.60; found: C 23.81, H 3.41, N 5.56.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1509829
https://doi.org/10.1107/S2414314616016394/sj4065sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616016394/sj4065Isup2.hkl
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2002 (Burla et al. 2003); program(s) used to refine structure: SHELXL97 (Sheldrick 2008); molecular graphics: DIAMOND (Brandenburg 1999); software used to prepare material for publication: Yadokari-XG (Kabuto et al. 2009).(C4H14N2)[Mn2(C2O4)3]·6H2O | F(000) = 588 |
Mr = 572.21 | Dx = 1.618 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2yn | Cell parameters from 9419 reflections |
a = 8.2623 (8) Å | θ = 2.5–28.9° |
b = 16.1821 (15) Å | µ = 1.16 mm−1 |
c = 9.4702 (9) Å | T = 100 K |
β = 111.9172 (10)° | Platelet, colorless |
V = 1174.66 (19) Å3 | 0.15 × 0.15 × 0.05 mm |
Z = 2 |
Bruker SMART APEX CCD detector diffractometer | 2975 independent reflections |
Radiation source: fine-focus sealed tube | 2789 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
φ and ω scans | θmax = 29.1°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.846, Tmax = 0.944 | k = −21→21 |
13965 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0238P)2 + 0.5691P] where P = (Fo2 + 2Fc2)/3 |
2975 reflections | (Δ/σ)max < 0.001 |
170 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.02869 (2) | 0.169789 (10) | 0.957930 (18) | 0.01373 (6) | |
O1 | −0.25273 (11) | 0.17989 (5) | 0.83745 (10) | 0.01818 (17) | |
O2 | 0.04842 (10) | 0.26513 (5) | 1.12735 (9) | 0.01710 (16) | |
O3 | 0.24744 (12) | 0.17269 (6) | 0.66258 (11) | 0.02013 (18) | |
H3 | 0.197 (3) | 0.2048 (13) | 0.698 (2) | 0.043 (5)* | |
H3A | 0.335 (3) | 0.1954 (12) | 0.661 (2) | 0.037 (5)* | |
O4 | 0.30602 (10) | 0.19016 (5) | 1.06540 (9) | 0.01681 (16) | |
O5 | 0.00415 (10) | 0.24760 (5) | 0.76634 (9) | 0.01656 (16) | |
O6 | 0.00269 (11) | 0.08224 (5) | 1.12066 (9) | 0.01871 (17) | |
O7 | −0.44146 (12) | 0.09772 (6) | 0.99547 (10) | 0.01985 (17) | |
H7 | −0.513 (2) | 0.1308 (13) | 1.012 (2) | 0.041 (5)* | |
O8 | 0.04419 (11) | 0.05226 (5) | 0.85630 (9) | 0.01841 (17) | |
C1 | 0.35089 (14) | 0.23655 (7) | 1.17931 (12) | 0.0132 (2) | |
N1 | 0.19120 (13) | 0.49595 (7) | 0.76866 (11) | 0.0181 (2) | |
H1 | 0.2093 | 0.5515 | 0.7721 | 0.027* | |
H1A | 0.1648 | 0.4776 | 0.6718 | 0.027* | |
H1B | 0.2895 | 0.4702 | 0.8319 | 0.027* | |
C2 | −0.29846 (14) | 0.22215 (7) | 0.71826 (12) | 0.0141 (2) | |
C3 | −0.01213 (14) | 0.00845 (7) | 1.07678 (12) | 0.0147 (2) | |
C4 | 0.07643 (16) | 0.50957 (8) | 0.97641 (13) | 0.0188 (2) | |
H4 | 0.0947 | 0.5701 | 0.9786 | 0.023* | |
H4A | 0.1837 | 0.4840 | 1.0498 | 0.023* | |
O9 | −0.03534 (17) | 0.11469 (9) | 1.40088 (14) | 0.0470 (4) | |
H9 | 0.052 (3) | 0.1325 (15) | 1.473 (2) | 0.053 (6)* | |
C5 | 0.04384 (16) | 0.47715 (8) | 0.81809 (13) | 0.0203 (2) | |
H5 | 0.0265 | 0.4166 | 0.8165 | 0.024* | |
H5A | −0.0644 | 0.5022 | 0.7452 | 0.024* | |
H5B | −0.391 (2) | 0.1254 (11) | 0.955 (2) | 0.032 (4)* | |
H5C | −0.005 (3) | 0.1135 (13) | 1.331 (3) | 0.051 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.01273 (9) | 0.01503 (9) | 0.01310 (9) | −0.00011 (6) | 0.00444 (7) | 0.00001 (6) |
O1 | 0.0135 (4) | 0.0236 (4) | 0.0177 (4) | −0.0004 (3) | 0.0062 (3) | 0.0064 (3) |
O2 | 0.0117 (4) | 0.0197 (4) | 0.0190 (4) | 0.0013 (3) | 0.0047 (3) | −0.0040 (3) |
O3 | 0.0168 (4) | 0.0228 (4) | 0.0246 (4) | −0.0020 (3) | 0.0120 (4) | −0.0020 (3) |
O4 | 0.0128 (4) | 0.0211 (4) | 0.0165 (4) | 0.0007 (3) | 0.0055 (3) | −0.0043 (3) |
O5 | 0.0115 (4) | 0.0205 (4) | 0.0175 (4) | 0.0000 (3) | 0.0052 (3) | 0.0028 (3) |
O6 | 0.0275 (4) | 0.0162 (4) | 0.0151 (4) | −0.0003 (3) | 0.0109 (3) | −0.0009 (3) |
O7 | 0.0204 (4) | 0.0204 (4) | 0.0237 (4) | 0.0017 (3) | 0.0139 (4) | 0.0027 (3) |
O8 | 0.0248 (4) | 0.0172 (4) | 0.0171 (4) | −0.0003 (3) | 0.0123 (3) | 0.0004 (3) |
C1 | 0.0125 (5) | 0.0137 (5) | 0.0147 (5) | 0.0017 (4) | 0.0065 (4) | 0.0013 (4) |
N1 | 0.0177 (5) | 0.0237 (5) | 0.0160 (4) | 0.0014 (4) | 0.0100 (4) | 0.0010 (4) |
C2 | 0.0133 (5) | 0.0141 (5) | 0.0164 (5) | −0.0009 (4) | 0.0073 (4) | −0.0005 (4) |
C3 | 0.0132 (5) | 0.0185 (5) | 0.0129 (5) | 0.0008 (4) | 0.0054 (4) | −0.0003 (4) |
C4 | 0.0215 (6) | 0.0221 (6) | 0.0172 (5) | −0.0017 (4) | 0.0123 (5) | −0.0007 (4) |
O9 | 0.0439 (7) | 0.0779 (9) | 0.0282 (6) | −0.0362 (7) | 0.0240 (5) | −0.0258 (6) |
C5 | 0.0204 (6) | 0.0257 (6) | 0.0192 (5) | −0.0053 (5) | 0.0122 (5) | −0.0027 (4) |
Mn1—O5 | 2.1549 (8) | C1—C2i | 1.5638 (15) |
Mn1—O8 | 2.1567 (8) | N1—C5 | 1.4897 (14) |
Mn1—O4 | 2.1573 (8) | N1—H1 | 0.9100 |
Mn1—O6 | 2.1623 (8) | N1—H1A | 0.9100 |
Mn1—O1 | 2.1805 (9) | N1—H1B | 0.9100 |
Mn1—O2 | 2.1876 (8) | C2—O2ii | 1.2534 (13) |
O1—C2 | 1.2513 (14) | C2—C1ii | 1.5638 (15) |
O2—C2i | 1.2534 (14) | C3—O8iii | 1.2499 (14) |
O3—H3 | 0.81 (2) | C3—C3iii | 1.564 (2) |
O3—H3A | 0.82 (2) | C4—C5 | 1.5147 (16) |
O4—C1 | 1.2515 (13) | C4—C4iv | 1.520 (2) |
O5—C1ii | 1.2528 (13) | C4—H4 | 0.9900 |
O6—C3 | 1.2552 (14) | C4—H4A | 0.9900 |
O7—H7 | 0.85 (2) | O9—H9 | 0.84 (2) |
O7—H5B | 0.800 (19) | O9—H5C | 0.79 (2) |
O8—C3iii | 1.2499 (14) | C5—H5 | 0.9900 |
C1—O5i | 1.2528 (13) | C5—H5A | 0.9900 |
O5—Mn1—O8 | 98.17 (3) | C5—N1—H1 | 109.5 |
O5—Mn1—O4 | 93.30 (3) | C5—N1—H1A | 109.5 |
O8—Mn1—O4 | 96.65 (3) | H1—N1—H1A | 109.5 |
O5—Mn1—O6 | 168.45 (3) | C5—N1—H1B | 109.5 |
O8—Mn1—O6 | 77.20 (3) | H1—N1—H1B | 109.5 |
O4—Mn1—O6 | 97.73 (3) | H1A—N1—H1B | 109.5 |
O5—Mn1—O1 | 76.63 (3) | O1—C2—O2ii | 126.65 (10) |
O8—Mn1—O1 | 93.55 (3) | O1—C2—C1ii | 116.56 (9) |
O4—Mn1—O1 | 166.61 (3) | O2ii—C2—C1ii | 116.79 (9) |
O6—Mn1—O1 | 92.97 (3) | O8iii—C3—O6 | 126.36 (10) |
O5—Mn1—O2 | 99.40 (3) | O8iii—C3—C3iii | 117.31 (12) |
O8—Mn1—O2 | 161.54 (3) | O6—C3—C3iii | 116.33 (12) |
O4—Mn1—O2 | 76.76 (3) | C5—C4—C4iv | 111.11 (13) |
O6—Mn1—O2 | 86.53 (3) | C5—C4—H4 | 109.4 |
O1—Mn1—O2 | 95.96 (3) | C4iv—C4—H4 | 109.4 |
C2—O1—Mn1 | 114.64 (7) | C5—C4—H4A | 109.4 |
C2i—O2—Mn1 | 113.54 (7) | C4iv—C4—H4A | 109.4 |
H3—O3—H3A | 107.9 (19) | H4—C4—H4A | 108.0 |
C1—O4—Mn1 | 114.78 (7) | H9—O9—H5C | 104.1 (19) |
C1ii—O5—Mn1 | 115.33 (7) | N1—C5—C4 | 112.09 (10) |
C3—O6—Mn1 | 114.25 (7) | N1—C5—H5 | 109.2 |
H7—O7—H5B | 104.7 (19) | C4—C5—H5 | 109.2 |
C3iii—O8—Mn1 | 114.07 (7) | N1—C5—H5A | 109.2 |
O4—C1—O5i | 126.26 (10) | C4—C5—H5A | 109.2 |
O4—C1—C2i | 116.99 (9) | H5—C5—H5A | 107.9 |
O5i—C1—C2i | 116.75 (9) | ||
O5—Mn1—O1—C2 | 1.12 (8) | O2—Mn1—O5—C1ii | −93.12 (8) |
O8—Mn1—O1—C2 | −96.44 (8) | O5—Mn1—O6—C3 | 59.66 (19) |
O4—Mn1—O1—C2 | 43.14 (17) | O8—Mn1—O6—C3 | −7.78 (8) |
O6—Mn1—O1—C2 | −173.79 (8) | O4—Mn1—O6—C3 | −102.89 (8) |
O2—Mn1—O1—C2 | 99.40 (8) | O1—Mn1—O6—C3 | 85.19 (8) |
O5—Mn1—O2—C2i | −100.89 (8) | O2—Mn1—O6—C3 | −179.01 (8) |
O8—Mn1—O2—C2i | 61.08 (14) | O5—Mn1—O8—C3iii | −161.48 (8) |
O4—Mn1—O2—C2i | −9.69 (8) | O4—Mn1—O8—C3iii | 104.20 (8) |
O6—Mn1—O2—C2i | 89.09 (8) | O6—Mn1—O8—C3iii | 7.75 (8) |
O1—Mn1—O2—C2i | −178.27 (8) | O1—Mn1—O8—C3iii | −84.50 (8) |
O5—Mn1—O4—C1 | 106.38 (8) | O2—Mn1—O8—C3iii | 36.49 (15) |
O8—Mn1—O4—C1 | −154.99 (8) | Mn1—O4—C1—O5i | 174.36 (9) |
O6—Mn1—O4—C1 | −77.06 (8) | Mn1—O4—C1—C2i | −4.78 (12) |
O1—Mn1—O4—C1 | 65.67 (16) | Mn1—O1—C2—O2ii | 177.64 (9) |
O2—Mn1—O4—C1 | 7.50 (8) | Mn1—O1—C2—C1ii | −2.56 (12) |
O8—Mn1—O5—C1ii | 92.56 (8) | Mn1—O6—C3—O8iii | −173.20 (9) |
O4—Mn1—O5—C1ii | −170.24 (8) | Mn1—O6—C3—C3iii | 6.79 (15) |
O6—Mn1—O5—C1ii | 27.1 (2) | C4iv—C4—C5—N1 | 179.40 (12) |
O1—Mn1—O5—C1ii | 0.83 (8) |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x, −y, −z+2; (iv) −x, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O5 | 0.81 (2) | 2.06 (2) | 2.8196 (12) | 157.3 (19) |
O3—H3A···O2v | 0.82 (2) | 2.01 (2) | 2.8156 (12) | 168.8 (19) |
O7—H7···O4vi | 0.85 (2) | 2.00 (2) | 2.8392 (12) | 169.6 (19) |
O9—H9···O3vii | 0.84 (2) | 2.02 (2) | 2.8565 (15) | 173 (2) |
O7—H5B···O1 | 0.800 (19) | 2.068 (19) | 2.8603 (12) | 171.1 (18) |
O9—H5C···O6 | 0.79 (2) | 2.08 (2) | 2.8354 (14) | 160 (2) |
N1—H1···O3viii | 0.91 | 2.05 | 2.9349 (14) | 165 |
N1—H1A···O7v | 0.91 | 1.99 | 2.8418 (14) | 156 |
N1—H1B···O9v | 0.91 | 1.92 | 2.7868 (15) | 157 |
Symmetry codes: (v) x+1/2, −y+1/2, z−1/2; (vi) x−1, y, z; (vii) x, y, z+1; (viii) −x+1/2, y+1/2, −z+3/2. |
Acknowledgements
The authors gratefully acknowledge financial support from JSPS Research Fellowships for Young Scientists No. 21.4405, Grant-in-Aid for Scientific Research Nos. 20350030 and 22108526.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Clemente-León, M., Coronado, E., Galán-Mascarós, J.-R. & Gómez-García, C. J. (1997). Chem. Commun. pp. 1727–1728. Google Scholar
Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218–224. CrossRef Google Scholar
Sadakiyo, M., Yamada, T. & Kitagawa, H. (2009). J. Am. Chem. Soc. 131, 9906–9907. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sadakiyo, M., Yamada, T. & Kitagawa, H. (2011). J. Am. Chem. Soc. 133, 11050–11053. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tamaki, H., Zhong, Z. J., Matsumoto, N., Kida, S., Koikawa, M., Achiwa, N., Hashimoto, Y. & Okawa, H. (1992). J. Am. Chem. Soc. 114, 6974–6979. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.