metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[butane-1,4-di­ammonium [tri-μ-oxalato-dimanganese(II)] hexa­hydrate]

CROSSMARK_Color_square_no_text.svg

aInternational Institute for Carbon-Neutral Energy Research, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan, and bDivision of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
*Correspondence e-mail: kitagawa@kuchem.kyoto-u.ac.jp

Edited by J. Simpson, University of Otago, New Zealand (Received 10 October 2016; accepted 14 October 2016; online 1 November 2016)

In the title coordination polymer, {(C4H14N2)[Mn2(C2O4)3]·6H2O}n, the MnII ions are octa­hedrally coordinated by the oxalate ligands to form a two-dimensional honeycomb-like network. This anionic framework incorporates the centrosymmetric butane-1,4-di­ammonium ions as counter-cations. The two-dimensional network is slightly distorted as a result of the vertically incorporated cations. Three kinds of water mol­ecules are located in an inter­layer space, forming hydrogen bonds with the ammonium cations and the oxalate ligands of the framework.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Oxalate-bridged infinite networks show various functionalities, such as ferromagnetism (Tamaki et al., 1992[Tamaki, H., Zhong, Z. J., Matsumoto, N., Kida, S., Koikawa, M., Achiwa, N., Hashimoto, Y. & Okawa, H. (1992). J. Am. Chem. Soc. 114, 6974-6979.]), high proton conduction (Sadakiyo et al., 2009[Sadakiyo, M., Yamada, T. & Kitagawa, H. (2009). J. Am. Chem. Soc. 131, 9906-9907.]) and selective adsorption properties (Sadakiyo et al., 2011[Sadakiyo, M., Yamada, T. & Kitagawa, H. (2011). J. Am. Chem. Soc. 133, 11050-11053.]). In this study, the crystal structure of a new oxalato-bridged manganese(II) two-dimensional network is reported.

There is one crystallographically independent Mn atom in the asymmetric unit and the oxalate ligands form bridges between the MnII ions. O atoms of the oxalate ligands coordinate the MnII cations in a slightly distorted octa­hedral geometry, forming a honeycomb-like two-dimensional network of [Mn2(C2O4)3]2− units which in turn incorporate the butane-1,4-di­ammonium counter-cations, (Fig. 1[link]). These cations lie on inversion centres located at the midpoint of the C4—C4iv bond [symmetry code: (iv) −x, −y + 1, −z + 2]. The two-dimensional sheets are stacked to form a layered structure (Fig. 2[link]). In the inter­layer space, there are three independent water mol­ecules (O3, O7 and O9) that form hydrogen bonds (Table 1[link]) with both the ammonium substituents of the cation and the O atoms of the oxalate ligands (Fig. 3[link]). The layer structure is distorted to accommodate the presence of the vertically incorporated cations, while other oxalate-bridged two-dimensional coordination polymers generally form a flat layer structure (Clemente-León et al., 1997[Clemente-León, M., Coronado, E., Galán-Mascarós, J.-R. & Gómez-García, C. J. (1997). Chem. Commun. pp. 1727-1728.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5 0.81 (2) 2.06 (2) 2.8196 (12) 157.3 (19)
O3—H3A⋯O2i 0.82 (2) 2.01 (2) 2.8156 (12) 168.8 (19)
O7—H7⋯O4ii 0.85 (2) 2.00 (2) 2.8392 (12) 169.6 (19)
O9—H9⋯O3iii 0.84 (2) 2.02 (2) 2.8565 (15) 173 (2)
O7—H5B⋯O1 0.800 (19) 2.068 (19) 2.8603 (12) 171.1 (18)
O9—H5C⋯O6 0.79 (2) 2.08 (2) 2.8354 (14) 160 (2)
N1—H1⋯O3iv 0.91 2.05 2.9349 (14) 165
N1—H1A⋯O7i 0.91 1.99 2.8418 (14) 156
N1—H1B⋯O9i 0.91 1.92 2.7868 (15) 157
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z; (iii) x, y, z+1; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The sheet structure of {[Mn2(C2O4)3]2−}n, incorporating butane-1,4-di­ammonium cations, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The layered structure of (C4N2H14)[Mn2(C2O4)3]·6H2O.
[Figure 3]
Figure 3
The water mol­ecules included in the inter­layer space, with displacement ellipsoids drawn at the 50% probability level.

Synthesis and crystallization

A mixture of manganese (II) acetate tetra­hydrate (10 mmol, 2451 mg), oxalic acid dihydrate (20 mmol, 2521 mg), 1,4-di­amino­butane (10 mmol, 1.0 ml), and distilled water (550 mmol, 10 ml) was heated in a 50 ml Teflon-lined autoclave. The reaction temperature was controlled using a programmable oven. The mixture was kept at 403 K for 24 h. After that, it was cooled slowly to 298 K over 168 h. Colourless crystals were collected by filtration (several crystals were stored in the mother liquid for structural analysis). After washing the samples with distilled water, the samples were dried under air (yield: 2324 mg, 81%). Elemental analysis calculated for C10H18Mn2N2O14 (%): C 24.02, H 3.63, N 5.60; found: C 23.81, H 3.41, N 5.56.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (C4H14N2)[Mn2(C2O4)3]·6H2O
Mr 572.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 8.2623 (8), 16.1821 (15), 9.4702 (9)
β (°) 111.9172 (10)
V3) 1174.66 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.16
Crystal size (mm) 0.15 × 0.15 × 0.05
 
Data collection
Diffractometer Bruker SMART APEX CCD detector
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.846, 0.944
No. of measured, independent and observed [I > 2σ(I)] reflections 13965, 2975, 2789
Rint 0.022
(sin θ/λ)max−1) 0.684
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.07
No. of reflections 2975
No. of parameters 170
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.55, −0.40
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2002 (Burla et al. 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]), SHELXL97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Yadokari-XG (Kabuto et al. 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218-224.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2002 (Burla et al. 2003); program(s) used to refine structure: SHELXL97 (Sheldrick 2008); molecular graphics: DIAMOND (Brandenburg 1999); software used to prepare material for publication: Yadokari-XG (Kabuto et al. 2009).

Poly[butane-1,4-diammonium [tri-µ-oxalato-dimanganese(II)] hexahydrate] top
Crystal data top
(C4H14N2)[Mn2(C2O4)3]·6H2OF(000) = 588
Mr = 572.21Dx = 1.618 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 9419 reflections
a = 8.2623 (8) Åθ = 2.5–28.9°
b = 16.1821 (15) ŵ = 1.16 mm1
c = 9.4702 (9) ÅT = 100 K
β = 111.9172 (10)°Platelet, colorless
V = 1174.66 (19) Å30.15 × 0.15 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2975 independent reflections
Radiation source: fine-focus sealed tube2789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 29.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.846, Tmax = 0.944k = 2121
13965 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0238P)2 + 0.5691P]
where P = (Fo2 + 2Fc2)/3
2975 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.02869 (2)0.169789 (10)0.957930 (18)0.01373 (6)
O10.25273 (11)0.17989 (5)0.83745 (10)0.01818 (17)
O20.04842 (10)0.26513 (5)1.12735 (9)0.01710 (16)
O30.24744 (12)0.17269 (6)0.66258 (11)0.02013 (18)
H30.197 (3)0.2048 (13)0.698 (2)0.043 (5)*
H3A0.335 (3)0.1954 (12)0.661 (2)0.037 (5)*
O40.30602 (10)0.19016 (5)1.06540 (9)0.01681 (16)
O50.00415 (10)0.24760 (5)0.76634 (9)0.01656 (16)
O60.00269 (11)0.08224 (5)1.12066 (9)0.01871 (17)
O70.44146 (12)0.09772 (6)0.99547 (10)0.01985 (17)
H70.513 (2)0.1308 (13)1.012 (2)0.041 (5)*
O80.04419 (11)0.05226 (5)0.85630 (9)0.01841 (17)
C10.35089 (14)0.23655 (7)1.17931 (12)0.0132 (2)
N10.19120 (13)0.49595 (7)0.76866 (11)0.0181 (2)
H10.20930.55150.77210.027*
H1A0.16480.47760.67180.027*
H1B0.28950.47020.83190.027*
C20.29846 (14)0.22215 (7)0.71826 (12)0.0141 (2)
C30.01213 (14)0.00845 (7)1.07678 (12)0.0147 (2)
C40.07643 (16)0.50957 (8)0.97641 (13)0.0188 (2)
H40.09470.57010.97860.023*
H4A0.18370.48401.04980.023*
O90.03534 (17)0.11469 (9)1.40088 (14)0.0470 (4)
H90.052 (3)0.1325 (15)1.473 (2)0.053 (6)*
C50.04384 (16)0.47715 (8)0.81809 (13)0.0203 (2)
H50.02650.41660.81650.024*
H5A0.06440.50220.74520.024*
H5B0.391 (2)0.1254 (11)0.955 (2)0.032 (4)*
H5C0.005 (3)0.1135 (13)1.331 (3)0.051 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01273 (9)0.01503 (9)0.01310 (9)0.00011 (6)0.00444 (7)0.00001 (6)
O10.0135 (4)0.0236 (4)0.0177 (4)0.0004 (3)0.0062 (3)0.0064 (3)
O20.0117 (4)0.0197 (4)0.0190 (4)0.0013 (3)0.0047 (3)0.0040 (3)
O30.0168 (4)0.0228 (4)0.0246 (4)0.0020 (3)0.0120 (4)0.0020 (3)
O40.0128 (4)0.0211 (4)0.0165 (4)0.0007 (3)0.0055 (3)0.0043 (3)
O50.0115 (4)0.0205 (4)0.0175 (4)0.0000 (3)0.0052 (3)0.0028 (3)
O60.0275 (4)0.0162 (4)0.0151 (4)0.0003 (3)0.0109 (3)0.0009 (3)
O70.0204 (4)0.0204 (4)0.0237 (4)0.0017 (3)0.0139 (4)0.0027 (3)
O80.0248 (4)0.0172 (4)0.0171 (4)0.0003 (3)0.0123 (3)0.0004 (3)
C10.0125 (5)0.0137 (5)0.0147 (5)0.0017 (4)0.0065 (4)0.0013 (4)
N10.0177 (5)0.0237 (5)0.0160 (4)0.0014 (4)0.0100 (4)0.0010 (4)
C20.0133 (5)0.0141 (5)0.0164 (5)0.0009 (4)0.0073 (4)0.0005 (4)
C30.0132 (5)0.0185 (5)0.0129 (5)0.0008 (4)0.0054 (4)0.0003 (4)
C40.0215 (6)0.0221 (6)0.0172 (5)0.0017 (4)0.0123 (5)0.0007 (4)
O90.0439 (7)0.0779 (9)0.0282 (6)0.0362 (7)0.0240 (5)0.0258 (6)
C50.0204 (6)0.0257 (6)0.0192 (5)0.0053 (5)0.0122 (5)0.0027 (4)
Geometric parameters (Å, º) top
Mn1—O52.1549 (8)C1—C2i1.5638 (15)
Mn1—O82.1567 (8)N1—C51.4897 (14)
Mn1—O42.1573 (8)N1—H10.9100
Mn1—O62.1623 (8)N1—H1A0.9100
Mn1—O12.1805 (9)N1—H1B0.9100
Mn1—O22.1876 (8)C2—O2ii1.2534 (13)
O1—C21.2513 (14)C2—C1ii1.5638 (15)
O2—C2i1.2534 (14)C3—O8iii1.2499 (14)
O3—H30.81 (2)C3—C3iii1.564 (2)
O3—H3A0.82 (2)C4—C51.5147 (16)
O4—C11.2515 (13)C4—C4iv1.520 (2)
O5—C1ii1.2528 (13)C4—H40.9900
O6—C31.2552 (14)C4—H4A0.9900
O7—H70.85 (2)O9—H90.84 (2)
O7—H5B0.800 (19)O9—H5C0.79 (2)
O8—C3iii1.2499 (14)C5—H50.9900
C1—O5i1.2528 (13)C5—H5A0.9900
O5—Mn1—O898.17 (3)C5—N1—H1109.5
O5—Mn1—O493.30 (3)C5—N1—H1A109.5
O8—Mn1—O496.65 (3)H1—N1—H1A109.5
O5—Mn1—O6168.45 (3)C5—N1—H1B109.5
O8—Mn1—O677.20 (3)H1—N1—H1B109.5
O4—Mn1—O697.73 (3)H1A—N1—H1B109.5
O5—Mn1—O176.63 (3)O1—C2—O2ii126.65 (10)
O8—Mn1—O193.55 (3)O1—C2—C1ii116.56 (9)
O4—Mn1—O1166.61 (3)O2ii—C2—C1ii116.79 (9)
O6—Mn1—O192.97 (3)O8iii—C3—O6126.36 (10)
O5—Mn1—O299.40 (3)O8iii—C3—C3iii117.31 (12)
O8—Mn1—O2161.54 (3)O6—C3—C3iii116.33 (12)
O4—Mn1—O276.76 (3)C5—C4—C4iv111.11 (13)
O6—Mn1—O286.53 (3)C5—C4—H4109.4
O1—Mn1—O295.96 (3)C4iv—C4—H4109.4
C2—O1—Mn1114.64 (7)C5—C4—H4A109.4
C2i—O2—Mn1113.54 (7)C4iv—C4—H4A109.4
H3—O3—H3A107.9 (19)H4—C4—H4A108.0
C1—O4—Mn1114.78 (7)H9—O9—H5C104.1 (19)
C1ii—O5—Mn1115.33 (7)N1—C5—C4112.09 (10)
C3—O6—Mn1114.25 (7)N1—C5—H5109.2
H7—O7—H5B104.7 (19)C4—C5—H5109.2
C3iii—O8—Mn1114.07 (7)N1—C5—H5A109.2
O4—C1—O5i126.26 (10)C4—C5—H5A109.2
O4—C1—C2i116.99 (9)H5—C5—H5A107.9
O5i—C1—C2i116.75 (9)
O5—Mn1—O1—C21.12 (8)O2—Mn1—O5—C1ii93.12 (8)
O8—Mn1—O1—C296.44 (8)O5—Mn1—O6—C359.66 (19)
O4—Mn1—O1—C243.14 (17)O8—Mn1—O6—C37.78 (8)
O6—Mn1—O1—C2173.79 (8)O4—Mn1—O6—C3102.89 (8)
O2—Mn1—O1—C299.40 (8)O1—Mn1—O6—C385.19 (8)
O5—Mn1—O2—C2i100.89 (8)O2—Mn1—O6—C3179.01 (8)
O8—Mn1—O2—C2i61.08 (14)O5—Mn1—O8—C3iii161.48 (8)
O4—Mn1—O2—C2i9.69 (8)O4—Mn1—O8—C3iii104.20 (8)
O6—Mn1—O2—C2i89.09 (8)O6—Mn1—O8—C3iii7.75 (8)
O1—Mn1—O2—C2i178.27 (8)O1—Mn1—O8—C3iii84.50 (8)
O5—Mn1—O4—C1106.38 (8)O2—Mn1—O8—C3iii36.49 (15)
O8—Mn1—O4—C1154.99 (8)Mn1—O4—C1—O5i174.36 (9)
O6—Mn1—O4—C177.06 (8)Mn1—O4—C1—C2i4.78 (12)
O1—Mn1—O4—C165.67 (16)Mn1—O1—C2—O2ii177.64 (9)
O2—Mn1—O4—C17.50 (8)Mn1—O1—C2—C1ii2.56 (12)
O8—Mn1—O5—C1ii92.56 (8)Mn1—O6—C3—O8iii173.20 (9)
O4—Mn1—O5—C1ii170.24 (8)Mn1—O6—C3—C3iii6.79 (15)
O6—Mn1—O5—C1ii27.1 (2)C4iv—C4—C5—N1179.40 (12)
O1—Mn1—O5—C1ii0.83 (8)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z+2; (iv) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O50.81 (2)2.06 (2)2.8196 (12)157.3 (19)
O3—H3A···O2v0.82 (2)2.01 (2)2.8156 (12)168.8 (19)
O7—H7···O4vi0.85 (2)2.00 (2)2.8392 (12)169.6 (19)
O9—H9···O3vii0.84 (2)2.02 (2)2.8565 (15)173 (2)
O7—H5B···O10.800 (19)2.068 (19)2.8603 (12)171.1 (18)
O9—H5C···O60.79 (2)2.08 (2)2.8354 (14)160 (2)
N1—H1···O3viii0.912.052.9349 (14)165
N1—H1A···O7v0.911.992.8418 (14)156
N1—H1B···O9v0.911.922.7868 (15)157
Symmetry codes: (v) x+1/2, y+1/2, z1/2; (vi) x1, y, z; (vii) x, y, z+1; (viii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from JSPS Research Fellowships for Young Scientists No. 21.4405, Grant-in-Aid for Scientific Research Nos. 20350030 and 22108526.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationClemente-León, M., Coronado, E., Galán-Mascarós, J.-R. & Gómez-García, C. J. (1997). Chem. Commun. pp. 1727–1728.  Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218–224.  CrossRef Google Scholar
First citationSadakiyo, M., Yamada, T. & Kitagawa, H. (2009). J. Am. Chem. Soc. 131, 9906–9907.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSadakiyo, M., Yamada, T. & Kitagawa, H. (2011). J. Am. Chem. Soc. 133, 11050–11053.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamaki, H., Zhong, Z. J., Matsumoto, N., Kida, S., Koikawa, M., Achiwa, N., Hashimoto, Y. & Okawa, H. (1992). J. Am. Chem. Soc. 114, 6974–6979.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds