organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(Benzo[d]thia­zol-2-yl)-N,N-di­methyl­aniline

CROSSMARK_Color_square_no_text.svg

aDeparment of Chemistry, Anhui University, Hefei 230039, Peoples Republic of China, Key Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: jywu1957@163.com

Edited by J. Simpson, University of Otago, New Zealand (Received 1 October 2016; accepted 18 November 2016; online 29 November 2016)

The whole mol­ecule of the title compound, C15H14N2S, is approximately planar, with an r.m.s. deviation of 0.0382 Å from the best-fit mean plane through all 18 non-H atoms. In the crystal, dimers form through ππ stacking inter­actions between the benzene rings of adjacent benzo­thia­zole ring systems, with a centroid–centroid separation of 3.6834 (16) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzo­thia­zole is an important bicyclic ring system that is present in a variety of materials with biological applications (Prajapati et al., 2014[Prajapati, N. P., Vekariya, R. H., Borad, M. A. & Patel, H. D. (2014). RSC Adv. 4, 60176-60208.]). Water solubility and biocompatibility can be tuned in such systems by introducing different substituent groups on the benzo­thia­zole ring system (Li et al., 2015[Li, X., Tao, R. R., Hong, L. J., Cheng, J., Jiang, Q., Lu, Y. M., Liao, M. H., Ye, W. F., Lu, N. N., Han, F., Hu, Y. Z. & Hu, Y. H. (2015). J. Am. Chem. Soc. 137, 12296-12303.]). Also, because of their unique photophysical properties, solid-state emitters based on benzo­thia­zole have been attracting considerable inter­est over the past few years in the field of optoelectronic devices (Padalkar et al., 2016[Padalkar, V. S. & Seki, S. (2016). Chem. Soc. Rev. 45, 169-202.]). A series of benzo­thia­zole derivatives have also been used recently recently both as fluorescent probes for anions and as bioactive mol­ecules in living cells (Li et al., 2015[Li, X., Tao, R. R., Hong, L. J., Cheng, J., Jiang, Q., Lu, Y. M., Liao, M. H., Ye, W. F., Lu, N. N., Han, F., Hu, Y. Z. & Hu, Y. H. (2015). J. Am. Chem. Soc. 137, 12296-12303.]; Zhang et al., 2015[Zhang, G., Gruskos, J. J., Afzal, M. S. & Buccella, D. (2015). Chem. Sci. 6, 6841-6846.]; Qian et al., 2016[Qian, L. H., Li, L. & Yao, S. Q. (2016). Acc. Chem. Res. 49, 626-634.]). In order to better understand the structure-property relationships of benzo­thia­zole derivatives, we have synthesized the title compound and its structure is reported here.

As shown in Fig. 1[link], the whole mol­ecule is approximately planar, with an r.m.s. deviation of 0.0382 Å from the best-fit mean plane through all 18 non-H atoms. The benzo­thia­zole ring system is inclined to the benzene ring by 4.59 (4)°. This planarity is reinforced by a weak intra­molecular C13—H13⋯S1 contact (Table 1[link]) that encloses an S(5) ring. The bond lengths in the structure are similar to those found in a closely related compound (Lynn et al., 2012[Lynn, M. A., Carlson, L. J., Hwangbo, H., Tanski, J. M. & Tyler, L. A. (2012). J. Mol. Struct. 1011, 81-93.]). In the crystal, dimers are formed through an offset ππ stacking inter­action between two adjacent C1–C6 rings (Fig. 2[link]) [Cg2⋯Cg2i = 3.6834 (16) Å; symmetry code: (i) −x + 2, −y, −z + 1]. No other significant contacts are found between the dimers.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯S1 0.93 2.71 3.127 (3) 108
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Stacking inter­actions between adjacent C1–C6 rings forming dimeric mol­ecular pairs. Centroids are shown as red spheres linked by green dotted lines.

Synthesis and crystallization

4-(Di­methyl­amino)­benzaldehyde (2.98 g, 20 mmol) and 4-amino­thio­phenol (2.50 g, 20 mmol) were dissolved in 50 ml of ethyl alcohol and heated to reflux for 6 h. The reaction mixture was cooled to room temperature and filtered to obtain 4.69 g of yellow crystals (yield = 92.3%). 1H NMR (400 MHz, DMSO-d6): δ 8.04 (d, J = 7.8 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 8.9 Hz, 2H), 7.47 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 6.82 (d, J = 8.9 Hz, 2H), 3.02 (s, 6H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H14N2S
Mr 254.34
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 11.0177 (15), 7.8508 (11), 29.691 (4)
V3) 2568.2 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker SMART2 CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.933, 0.955
No. of measured, independent and observed [I > 2σ(I)] reflections 16833, 2256, 1606
Rint 0.043
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.154, 1.05
No. of reflections 2256
No. of parameters 165
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.23
Computer programs: SMART2 and SAINT (Bruker, 2000[Bruker (2000). SMART2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: SMART2 (Bruker, 2000); cell refinement: SMART2 (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-(Benzo[d]thiazol-2-yl)-N,N-dimethylaniline top
Crystal data top
C15H14N2SF(000) = 1072
Mr = 254.34Dx = 1.316 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3029 reflections
a = 11.0177 (15) Åθ = 2.3–23.8°
b = 7.8508 (11) ŵ = 0.23 mm1
c = 29.691 (4) ÅT = 296 K
V = 2568.2 (6) Å3Rod-like, colourless
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART2 CCD area-detector
diffractometer
2256 independent reflections
Radiation source: fine-focus sealed tube1606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.933, Tmax = 0.955k = 99
16833 measured reflectionsl = 3435
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2256 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77770 (6)0.01253 (8)0.60466 (2)0.0696 (3)
N10.96074 (15)0.2173 (2)0.61401 (7)0.0612 (5)
C90.96654 (17)0.2058 (3)0.71182 (9)0.0568 (6)
H91.02760.26610.69720.068*
C60.93875 (18)0.2027 (3)0.56823 (8)0.0593 (6)
C80.87971 (17)0.1203 (2)0.68596 (7)0.0529 (5)
C110.87395 (17)0.1146 (2)0.78151 (8)0.0562 (6)
C100.96477 (17)0.2037 (3)0.75759 (8)0.0585 (6)
H101.02450.26200.77350.070*
C10.8422 (2)0.0953 (3)0.55647 (8)0.0632 (6)
C70.88269 (17)0.1277 (2)0.63709 (8)0.0551 (6)
C130.78936 (17)0.0326 (3)0.70975 (9)0.0598 (6)
H130.72970.02540.69370.072*
N20.87142 (17)0.1140 (3)0.82771 (7)0.0711 (6)
C120.78625 (18)0.0298 (3)0.75562 (9)0.0607 (6)
H120.72460.02970.77010.073*
C51.0048 (2)0.2827 (3)0.53448 (10)0.0757 (7)
H51.06900.35460.54180.091*
C20.8123 (2)0.0686 (3)0.51142 (10)0.0779 (7)
H20.74820.00250.50360.093*
C150.7785 (2)0.0236 (4)0.85263 (10)0.0843 (8)
H15A0.70000.06620.84430.126*
H15B0.79090.04040.88430.126*
H15C0.78320.09580.84580.126*
C40.9750 (3)0.2551 (3)0.49059 (10)0.0834 (8)
H41.01950.30840.46800.100*
C30.8790 (3)0.1487 (4)0.47891 (9)0.0867 (8)
H30.86010.13190.44870.104*
C140.9704 (2)0.1817 (4)0.85393 (9)0.0875 (8)
H14A1.04600.15390.83960.131*
H14B0.96860.13310.88360.131*
H14C0.96260.30320.85600.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0590 (4)0.0574 (4)0.0923 (6)0.0116 (3)0.0100 (3)0.0052 (3)
N10.0511 (10)0.0507 (11)0.0818 (14)0.0054 (9)0.0010 (9)0.0012 (9)
C90.0404 (10)0.0462 (11)0.0840 (17)0.0056 (9)0.0036 (10)0.0009 (10)
C60.0549 (11)0.0485 (12)0.0745 (16)0.0051 (10)0.0017 (11)0.0053 (10)
C80.0413 (10)0.0371 (10)0.0802 (15)0.0027 (8)0.0037 (9)0.0019 (10)
C110.0469 (11)0.0385 (11)0.0833 (16)0.0057 (9)0.0043 (10)0.0030 (10)
C100.0428 (11)0.0533 (12)0.0795 (17)0.0059 (9)0.0013 (10)0.0042 (11)
C10.0592 (12)0.0496 (13)0.0807 (16)0.0071 (10)0.0074 (11)0.0070 (11)
C70.0429 (11)0.0384 (11)0.0838 (16)0.0047 (9)0.0070 (10)0.0029 (10)
C130.0458 (12)0.0431 (12)0.0906 (19)0.0058 (9)0.0089 (11)0.0002 (11)
N20.0649 (13)0.0693 (13)0.0791 (14)0.0098 (10)0.0046 (10)0.0022 (10)
C120.0458 (12)0.0472 (13)0.0890 (18)0.0075 (9)0.0031 (10)0.0068 (11)
C50.0708 (15)0.0705 (16)0.086 (2)0.0048 (13)0.0014 (13)0.0022 (13)
C20.0772 (16)0.0642 (16)0.092 (2)0.0036 (13)0.0166 (15)0.0115 (15)
C150.0753 (17)0.0795 (19)0.098 (2)0.0083 (14)0.0139 (14)0.0124 (15)
C40.0898 (18)0.0784 (19)0.082 (2)0.0054 (15)0.0059 (15)0.0010 (14)
C30.099 (2)0.0790 (18)0.0820 (18)0.0163 (16)0.0088 (16)0.0074 (16)
C140.0789 (17)0.102 (2)0.0818 (19)0.0037 (16)0.0025 (14)0.0044 (15)
Geometric parameters (Å, º) top
S1—C11.725 (2)C13—H130.9300
S1—C71.756 (2)N2—C141.442 (3)
N1—C71.305 (3)N2—C151.449 (3)
N1—C61.385 (3)C12—H120.9300
C9—C101.359 (3)C5—C41.361 (4)
C9—C81.398 (3)C5—H50.9300
C9—H90.9300C2—C31.366 (4)
C6—C51.389 (3)C2—H20.9300
C6—C11.402 (3)C15—H15A0.9600
C8—C131.401 (3)C15—H15B0.9600
C8—C71.452 (3)C15—H15C0.9600
C11—N21.372 (3)C4—C31.392 (4)
C11—C121.403 (3)C4—H40.9300
C11—C101.413 (3)C3—H30.9300
C10—H100.9300C14—H14A0.9600
C1—C21.393 (3)C14—H14B0.9600
C13—C121.363 (4)C14—H14C0.9600
C1—S1—C789.41 (11)C14—N2—C15116.0 (2)
C7—N1—C6110.82 (18)C13—C12—C11121.5 (2)
C10—C9—C8122.2 (2)C13—C12—H12119.2
C10—C9—H9118.9C11—C12—H12119.2
C8—C9—H9118.9C4—C5—C6119.5 (2)
N1—C6—C5125.4 (2)C4—C5—H5120.3
N1—C6—C1115.3 (2)C6—C5—H5120.3
C5—C6—C1119.4 (2)C3—C2—C1118.8 (3)
C9—C8—C13116.4 (2)C3—C2—H2120.6
C9—C8—C7120.94 (19)C1—C2—H2120.6
C13—C8—C7122.62 (19)N2—C15—H15A109.5
N2—C11—C12122.2 (2)N2—C15—H15B109.5
N2—C11—C10121.2 (2)H15A—C15—H15B109.5
C12—C11—C10116.6 (2)N2—C15—H15C109.5
C9—C10—C11121.3 (2)H15A—C15—H15C109.5
C9—C10—H10119.4H15B—C15—H15C109.5
C11—C10—H10119.4C5—C4—C3121.2 (3)
C2—C1—C6120.6 (2)C5—C4—H4119.4
C2—C1—S1130.0 (2)C3—C4—H4119.4
C6—C1—S1109.43 (17)C2—C3—C4120.6 (3)
N1—C7—C8124.11 (18)C2—C3—H3119.7
N1—C7—S1115.06 (17)C4—C3—H3119.7
C8—C7—S1120.83 (15)N2—C14—H14A109.5
C12—C13—C8122.0 (2)N2—C14—H14B109.5
C12—C13—H13119.0H14A—C14—H14B109.5
C8—C13—H13119.0N2—C14—H14C109.5
C11—N2—C14121.6 (2)H14A—C14—H14C109.5
C11—N2—C15121.8 (2)H14B—C14—H14C109.5
C7—N1—C6—C5179.6 (2)C1—S1—C7—N11.29 (16)
C7—N1—C6—C11.3 (3)C1—S1—C7—C8178.67 (17)
C10—C9—C8—C130.5 (3)C9—C8—C13—C120.3 (3)
C10—C9—C8—C7178.81 (19)C7—C8—C13—C12178.59 (19)
C8—C9—C10—C110.2 (3)C12—C11—N2—C14171.5 (2)
N2—C11—C10—C9179.3 (2)C10—C11—N2—C149.5 (3)
C12—C11—C10—C90.3 (3)C12—C11—N2—C150.8 (3)
N1—C6—C1—C2179.1 (2)C10—C11—N2—C15179.80 (19)
C5—C6—C1—C20.0 (3)C8—C13—C12—C110.2 (3)
N1—C6—C1—S10.4 (2)N2—C11—C12—C13179.4 (2)
C5—C6—C1—S1179.49 (17)C10—C11—C12—C130.4 (3)
C7—S1—C1—C2179.9 (2)N1—C6—C5—C4178.8 (2)
C7—S1—C1—C60.47 (16)C1—C6—C5—C40.2 (3)
C6—N1—C7—C8178.27 (18)C6—C1—C2—C30.1 (4)
C6—N1—C7—S11.7 (2)S1—C1—C2—C3179.2 (2)
C9—C8—C7—N12.9 (3)C6—C5—C4—C30.3 (4)
C13—C8—C7—N1175.30 (18)C1—C2—C3—C40.1 (4)
C9—C8—C7—S1177.11 (14)C5—C4—C3—C20.2 (4)
C13—C8—C7—S14.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···S10.932.713.127 (3)108
 

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (grant Nos. 51372003 and 5167220).

References

First citationBruker (2000). SMART2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, X., Tao, R. R., Hong, L. J., Cheng, J., Jiang, Q., Lu, Y. M., Liao, M. H., Ye, W. F., Lu, N. N., Han, F., Hu, Y. Z. & Hu, Y. H. (2015). J. Am. Chem. Soc. 137, 12296–12303.  CAS Google Scholar
First citationLynn, M. A., Carlson, L. J., Hwangbo, H., Tanski, J. M. & Tyler, L. A. (2012). J. Mol. Struct. 1011, 81–93.  CAS Google Scholar
First citationPadalkar, V. S. & Seki, S. (2016). Chem. Soc. Rev. 45, 169–202.  CAS Google Scholar
First citationPrajapati, N. P., Vekariya, R. H., Borad, M. A. & Patel, H. D. (2014). RSC Adv. 4, 60176–60208.  CAS Google Scholar
First citationQian, L. H., Li, L. & Yao, S. Q. (2016). Acc. Chem. Res. 49, 626–634.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, G., Gruskos, J. J., Afzal, M. S. & Buccella, D. (2015). Chem. Sci. 6, 6841–6846.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds