organic compounds
N-[3-Methyl-1-phenyl-1-(1H-tetrazol-1-yl)butan-2-yl]acetamide
aDepartment of Physics, Chevalier T. Thomas Elizabeth College for Women, Sembium, Chennai 600 011, India, bCentral Leather Research Institute, Organic Chemistry division, Adyar, Chennai 600 020, India, and cDepartment of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India
*Correspondence e-mail: lakssdnbvc@gmail.com
In the molecule of the title compound, C14H19N5O, the dihedral angle formed between the tetrazole and phenyl rings is 68.39 (4)°. In the crystal, molecules are linked by N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds to form two-dimensional networks extending parallel to the bc plane.
Keywords: crystal structure; tetrazole; acetamide; hydrogen bonds.
CCDC reference: 1516411
Structure description
Compounds containing a tetrazole ring have attracted much attention in medicinal chemistry (Alam & Nasrollahzadeh, 2009). Tetrazoles are reported to exhibits antihypertensive (Sharma et al., 2010), antimicrobial (Yildirir et al., 2009), antibacterial, antifungal (Dhayanithi et al., 2011) and anticancer activities (Bhaskar & Mohite, 2010). These functional units exhibit strong networking ability as ligands. They act as mono-, bi- or multidentate ligands due to the electron-donating nature of the four nitrogen atoms in the tetrazole moiety (Wang et al., 2005).
In the title compound (Fig. 1), the bond between the two chiral carbons C7 and C8 acts as the bridge connecting the phenyl ring, the 1-H tetrazole ring and the acetamide unit. The dihedral angle between the tetrazole ring (N1–N4, C14) and the phenyl ring (C1–C6) is 68.39 (4)°. The mean plane through the acetamide unit (N5, C12, C13, O1) forms dihedral angles of 62.00 (6) and 13.23 (6)° with the tetrazole and phenyl rings, respectively.
In the crystal, the molecules are linked through C—H⋯O, C—H⋯N and N—H⋯N hydrogen bonds (Table 1) into two-dimensional networks extending parallel to the bc plane (Fig. 2).
Synthesis and crystallization
A Mannich condensation reaction involving benzaldehye (200 mmol), isobutyl methyl ketone (100 mmol) and ammonium acetate (100 mmol) in 70 ml methanol at 70°C for 2 h afforded the respective piperidinone as crystals. The crystals were washed with methanol, dried completely under vacuum, then converted into the hydrochloride form by dissolving them in 30 ml ethanol and 20 ml ether and adding an equivalent volume of concentrated hydrochloric acid dropwise. 2 g of the precipitate obtained was gradually added to a beaker containing 10 ml of concentrated sulfuric acid in ice-cold condition, dissolved thoroughly and kept at room temperature with continuous stirring. 0.65 g of sodium azide was then added in small quantities to the beaker. On addition of sodium azide, a foam formed which subsequently subsided due to liberation of nitrogen. The solution was transferred into a beaker containing ice and neutralized with 4 M sodium hydroxide. The white precipitate formed was filtered through a Buchner funnel, vacuum dried and recrystallized with ethanol. The resulting lactam was cleaved under acidic conditions (6 M HCl) to form the substituted vicinal diamine. Conversion of the hydrochloride salt of the vicinal diamine into the free diamine was performed using 2 mol of sodium acetate. The vicinal diamine was then converted into acetylated 1-substituted tetrazole in the presence of 2 mol of sodium azide and 2 mol of triethyl orthoformate at 60°C in a glacial acetic acid medium. The compound obtained was then dissolved in methanol, transferred to a 15 ml vial, and the vial wrapped with tissue paper for controlled evaporation of the solvent without contamination. Single crystals suitable for X-ray analysis were formed after three days.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1516411
https://doi.org/10.1107/S2414314616018101/rz4006sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616018101/rz4006Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616018101/rz4006Isup3.cml
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C14H19N5O | F(000) = 584 |
Mr = 273.34 | Dx = 1.191 Mg m−3 |
Monoclinic, P21/c | Melting point: 393 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 9.7056 (6) Å | Cell parameters from 3760 reflections |
b = 7.7663 (5) Å | θ = 2.8–28.3° |
c = 20.2620 (9) Å | µ = 0.08 mm−1 |
β = 93.490 (2)° | T = 296 K |
V = 1524.45 (15) Å3 | Block, colourless |
Z = 4 | 0.35 × 0.30 × 0.30 mm |
Bruker Kappa APEXII CCD diffractometer | 3760 independent reflections |
Radiation source: fine-focus sealed tube | 2712 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Bruker axs kappa apex2 CCD Diffractometer scans | θmax = 28.3°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −12→12 |
Tmin = 0.740, Tmax = 0.976 | k = −10→10 |
10998 measured reflections | l = −26→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: mixed |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0588P)2 + 0.4088P] where P = (Fo2 + 2Fc2)/3 |
3760 reflections | (Δ/σ)max = 0.010 |
188 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.61825 (12) | 0.64603 (18) | 0.04105 (5) | 0.0600 (3) | |
N1 | 0.43416 (11) | 0.38123 (15) | 0.15539 (5) | 0.0342 (3) | |
N2 | 0.48431 (16) | 0.3137 (2) | 0.21287 (6) | 0.0556 (4) | |
N3 | 0.57528 (16) | 0.2002 (2) | 0.19824 (7) | 0.0605 (4) | |
N4 | 0.58598 (13) | 0.19027 (18) | 0.13256 (7) | 0.0484 (3) | |
N5 | 0.50558 (12) | 0.72547 (16) | 0.12972 (6) | 0.0388 (3) | |
H5A | 0.5130 (17) | 0.774 (2) | 0.1670 (9) | 0.049 (5)* | |
C1 | 0.18648 (14) | 0.44056 (18) | 0.13683 (7) | 0.0374 (3) | |
C2 | 0.09223 (18) | 0.4295 (3) | 0.18515 (9) | 0.0616 (5) | |
H2 | 0.1152 | 0.4707 | 0.2275 | 0.074* | |
C3 | −0.0371 (2) | 0.3568 (3) | 0.17039 (13) | 0.0847 (7) | |
H3 | −0.1001 | 0.3499 | 0.2031 | 0.102* | |
C4 | −0.07241 (19) | 0.2958 (3) | 0.10887 (13) | 0.0788 (6) | |
H4 | −0.1590 | 0.2474 | 0.0995 | 0.095* | |
C5 | 0.02009 (18) | 0.3061 (3) | 0.06068 (10) | 0.0631 (5) | |
H5 | −0.0038 | 0.2645 | 0.0185 | 0.076* | |
C6 | 0.14894 (15) | 0.3779 (2) | 0.07445 (8) | 0.0462 (4) | |
H6 | 0.2111 | 0.3842 | 0.0414 | 0.055* | |
C7 | 0.32751 (14) | 0.51735 (18) | 0.15342 (6) | 0.0349 (3) | |
H7 | 0.3268 | 0.5674 | 0.1978 | 0.042* | |
C8 | 0.37089 (14) | 0.65989 (18) | 0.10615 (6) | 0.0349 (3) | |
H8 | 0.3817 | 0.6063 | 0.0630 | 0.042* | |
C9 | 0.26314 (16) | 0.8039 (2) | 0.09599 (7) | 0.0448 (4) | |
H9 | 0.1749 | 0.7495 | 0.0822 | 0.054* | |
C10 | 0.2413 (2) | 0.9070 (3) | 0.15828 (9) | 0.0670 (5) | |
H10A | 0.3262 | 0.9619 | 0.1731 | 0.100* | |
H10B | 0.2121 | 0.8312 | 0.1922 | 0.100* | |
H10C | 0.1717 | 0.9929 | 0.1489 | 0.100* | |
C11 | 0.3024 (2) | 0.9215 (2) | 0.04006 (8) | 0.0606 (5) | |
H11A | 0.2328 | 1.0084 | 0.0326 | 0.091* | |
H11B | 0.3096 | 0.8550 | 0.0005 | 0.091* | |
H11C | 0.3895 | 0.9754 | 0.0518 | 0.091* | |
C12 | 0.61938 (15) | 0.71366 (19) | 0.09555 (7) | 0.0418 (3) | |
C13 | 0.74903 (18) | 0.7856 (3) | 0.12893 (10) | 0.0612 (5) | |
H13A | 0.8277 | 0.7309 | 0.1115 | 0.092* | |
H13B | 0.7493 | 0.7647 | 0.1756 | 0.092* | |
H13C | 0.7531 | 0.9074 | 0.1210 | 0.092* | |
C14 | 0.49788 (15) | 0.30355 (19) | 0.10746 (7) | 0.0412 (3) | |
H14 | 0.4822 | 0.3264 | 0.0626 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0576 (7) | 0.0833 (9) | 0.0399 (6) | −0.0092 (6) | 0.0106 (5) | −0.0082 (6) |
N1 | 0.0361 (6) | 0.0374 (6) | 0.0285 (5) | −0.0026 (5) | −0.0029 (4) | 0.0043 (5) |
N2 | 0.0667 (9) | 0.0659 (10) | 0.0332 (7) | 0.0124 (8) | −0.0060 (6) | 0.0102 (6) |
N3 | 0.0647 (9) | 0.0653 (10) | 0.0501 (8) | 0.0157 (8) | −0.0092 (7) | 0.0129 (7) |
N4 | 0.0438 (7) | 0.0479 (8) | 0.0530 (8) | 0.0046 (6) | −0.0004 (6) | 0.0068 (6) |
N5 | 0.0420 (7) | 0.0423 (7) | 0.0318 (6) | −0.0075 (5) | −0.0008 (5) | −0.0065 (5) |
C1 | 0.0350 (7) | 0.0378 (8) | 0.0399 (7) | 0.0017 (6) | 0.0054 (5) | 0.0063 (6) |
C2 | 0.0551 (10) | 0.0821 (14) | 0.0493 (9) | −0.0016 (9) | 0.0179 (8) | 0.0044 (9) |
C3 | 0.0517 (11) | 0.1155 (19) | 0.0907 (16) | −0.0091 (12) | 0.0343 (11) | 0.0137 (14) |
C4 | 0.0398 (10) | 0.0940 (16) | 0.1027 (17) | −0.0163 (10) | 0.0056 (10) | 0.0085 (14) |
C5 | 0.0450 (9) | 0.0713 (13) | 0.0715 (12) | −0.0107 (9) | −0.0085 (8) | −0.0026 (10) |
C6 | 0.0370 (7) | 0.0551 (9) | 0.0464 (8) | −0.0064 (7) | 0.0027 (6) | −0.0019 (7) |
C7 | 0.0387 (7) | 0.0390 (7) | 0.0270 (6) | 0.0011 (6) | 0.0016 (5) | −0.0017 (5) |
C8 | 0.0386 (7) | 0.0351 (7) | 0.0306 (6) | −0.0035 (6) | −0.0009 (5) | −0.0012 (5) |
C9 | 0.0461 (8) | 0.0410 (8) | 0.0465 (8) | 0.0017 (7) | −0.0036 (6) | 0.0025 (6) |
C10 | 0.0816 (13) | 0.0610 (12) | 0.0592 (11) | 0.0248 (10) | 0.0116 (9) | −0.0017 (9) |
C11 | 0.0816 (13) | 0.0461 (10) | 0.0534 (10) | 0.0048 (9) | −0.0025 (9) | 0.0108 (8) |
C12 | 0.0440 (8) | 0.0414 (8) | 0.0396 (8) | −0.0044 (7) | 0.0000 (6) | 0.0053 (6) |
C13 | 0.0458 (9) | 0.0648 (12) | 0.0720 (12) | −0.0081 (8) | −0.0040 (8) | −0.0034 (9) |
C14 | 0.0436 (8) | 0.0442 (8) | 0.0356 (7) | 0.0023 (6) | 0.0014 (6) | 0.0030 (6) |
O1—C12 | 1.2221 (18) | C5—H5 | 0.9300 |
N1—C14 | 1.3276 (18) | C6—H6 | 0.9300 |
N1—N2 | 1.3413 (16) | C7—C8 | 1.5392 (19) |
N1—C7 | 1.4784 (18) | C7—H7 | 0.9800 |
N2—N3 | 1.295 (2) | C8—C9 | 1.536 (2) |
N3—N4 | 1.3434 (19) | C8—H8 | 0.9800 |
N4—C14 | 1.3079 (19) | C9—C10 | 1.520 (2) |
N5—C12 | 1.3420 (19) | C9—C11 | 1.522 (2) |
N5—C8 | 1.4562 (17) | C9—H9 | 0.9800 |
N5—H5A | 0.844 (18) | C10—H10A | 0.9600 |
C1—C6 | 1.382 (2) | C10—H10B | 0.9600 |
C1—C2 | 1.383 (2) | C10—H10C | 0.9600 |
C1—C7 | 1.5120 (19) | C11—H11A | 0.9600 |
C2—C3 | 1.392 (3) | C11—H11B | 0.9600 |
C2—H2 | 0.9300 | C11—H11C | 0.9600 |
C3—C4 | 1.358 (3) | C12—C13 | 1.500 (2) |
C3—H3 | 0.9300 | C13—H13A | 0.9600 |
C4—C5 | 1.368 (3) | C13—H13B | 0.9600 |
C4—H4 | 0.9300 | C13—H13C | 0.9600 |
C5—C6 | 1.382 (2) | C14—H14 | 0.9300 |
C14—N1—N2 | 107.28 (12) | C9—C8—C7 | 113.40 (11) |
C14—N1—C7 | 131.43 (11) | N5—C8—H8 | 107.4 |
N2—N1—C7 | 121.30 (11) | C9—C8—H8 | 107.4 |
N3—N2—N1 | 106.48 (12) | C7—C8—H8 | 107.4 |
N2—N3—N4 | 111.16 (12) | C10—C9—C11 | 110.85 (15) |
C14—N4—N3 | 104.96 (13) | C10—C9—C8 | 113.59 (13) |
C12—N5—C8 | 123.88 (12) | C11—C9—C8 | 109.73 (13) |
C12—N5—H5A | 117.7 (11) | C10—C9—H9 | 107.5 |
C8—N5—H5A | 118.4 (11) | C11—C9—H9 | 107.5 |
C6—C1—C2 | 118.47 (14) | C8—C9—H9 | 107.5 |
C6—C1—C7 | 121.79 (12) | C9—C10—H10A | 109.5 |
C2—C1—C7 | 119.73 (14) | C9—C10—H10B | 109.5 |
C1—C2—C3 | 119.98 (18) | H10A—C10—H10B | 109.5 |
C1—C2—H2 | 120.0 | C9—C10—H10C | 109.5 |
C3—C2—H2 | 120.0 | H10A—C10—H10C | 109.5 |
C4—C3—C2 | 120.85 (17) | H10B—C10—H10C | 109.5 |
C4—C3—H3 | 119.6 | C9—C11—H11A | 109.5 |
C2—C3—H3 | 119.6 | C9—C11—H11B | 109.5 |
C3—C4—C5 | 119.66 (18) | H11A—C11—H11B | 109.5 |
C3—C4—H4 | 120.2 | C9—C11—H11C | 109.5 |
C5—C4—H4 | 120.2 | H11A—C11—H11C | 109.5 |
C4—C5—C6 | 120.27 (19) | H11B—C11—H11C | 109.5 |
C4—C5—H5 | 119.9 | O1—C12—N5 | 122.22 (14) |
C6—C5—H5 | 119.9 | O1—C12—C13 | 121.92 (14) |
C5—C6—C1 | 120.77 (15) | N5—C12—C13 | 115.85 (14) |
C5—C6—H6 | 119.6 | C12—C13—H13A | 109.5 |
C1—C6—H6 | 119.6 | C12—C13—H13B | 109.5 |
N1—C7—C1 | 110.29 (11) | H13A—C13—H13B | 109.5 |
N1—C7—C8 | 108.27 (10) | C12—C13—H13C | 109.5 |
C1—C7—C8 | 115.06 (11) | H13A—C13—H13C | 109.5 |
N1—C7—H7 | 107.6 | H13B—C13—H13C | 109.5 |
C1—C7—H7 | 107.6 | N4—C14—N1 | 110.12 (13) |
C8—C7—H7 | 107.6 | N4—C14—H14 | 124.9 |
N5—C8—C9 | 112.30 (12) | N1—C14—H14 | 124.9 |
N5—C8—C7 | 108.76 (11) | ||
C14—N1—N2—N3 | 0.25 (17) | C6—C1—C7—C8 | 52.19 (19) |
C7—N1—N2—N3 | −179.60 (13) | C2—C1—C7—C8 | −128.80 (15) |
N1—N2—N3—N4 | −0.4 (2) | C12—N5—C8—C9 | −116.60 (15) |
N2—N3—N4—C14 | 0.3 (2) | C12—N5—C8—C7 | 117.06 (14) |
C6—C1—C2—C3 | −0.1 (3) | N1—C7—C8—N5 | −58.28 (13) |
C7—C1—C2—C3 | −179.13 (18) | C1—C7—C8—N5 | 177.83 (11) |
C1—C2—C3—C4 | 0.1 (4) | N1—C7—C8—C9 | 176.01 (11) |
C2—C3—C4—C5 | −0.1 (4) | C1—C7—C8—C9 | 52.12 (16) |
C3—C4—C5—C6 | 0.1 (4) | N5—C8—C9—C10 | −58.69 (17) |
C4—C5—C6—C1 | 0.0 (3) | C7—C8—C9—C10 | 65.11 (17) |
C2—C1—C6—C5 | 0.1 (3) | N5—C8—C9—C11 | 66.00 (16) |
C7—C1—C6—C5 | 179.09 (15) | C7—C8—C9—C11 | −170.20 (12) |
C14—N1—C7—C1 | 80.54 (17) | C8—N5—C12—O1 | 0.1 (2) |
N2—N1—C7—C1 | −99.66 (14) | C8—N5—C12—C13 | −178.70 (14) |
C14—N1—C7—C8 | −46.17 (18) | N3—N4—C14—N1 | −0.15 (18) |
N2—N1—C7—C8 | 133.64 (13) | N2—N1—C14—N4 | −0.06 (17) |
C6—C1—C7—N1 | −70.63 (16) | C7—N1—C14—N4 | 179.77 (13) |
C2—C1—C7—N1 | 108.39 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···N2i | 0.844 (18) | 2.452 (18) | 3.2579 (17) | 160.0 (15) |
C6—H6···O1ii | 0.93 | 2.43 | 3.356 (2) | 171 |
C7—H7···N3i | 0.98 | 2.48 | 3.4055 (19) | 157 |
C14—H14···O1ii | 0.93 | 2.27 | 3.1728 (19) | 163 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z. |
Acknowledgements
The authors thank the single-crystal XRD facility, SAIF, IIT Madras, Chennai, for the data collection.
References
Alam, A. R. M. & Nasrollahzadeh, M. (2009). Turk. J. Chem. 33, 267–280. Google Scholar
Bhaskar, V. H. & Mohite, P. B. (2010). J. Optoelectron. Biomed. Mater. 2, 249–259. Google Scholar
Bruker (2004). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dhayanithi, V., Shafi, S. S., Kumaran, K., Jai, S. K. R., Ragavan, V. R., Goud, K., Sanath, Kumari, S. N. & Pati, H. N. (2011). J. Serb. Chem. Soc. 76, 165–175. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sharma, M. C., Kohli, D. V. & Sharma, S. (2010). Int. j Drug. Deliv. 2, 228–237. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X. S., Tang, Y. Z., Huang, X. F., Qu, Z. R., Che, C. M., Chan, P. W. H. & Xiong, R. G. (2005). Inorg. Chem. 44, 5278–5285. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yıldırır, Y., Us, M. F., Çolak, N., Özkan, H., Yavuz, S., Disli, A., Ozturk, S. & Turker, L. (2009). Med. Chem. Res. 18, 91–97. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.