organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-[3-Methyl-1-phenyl-1-(1H-tetra­zol-1-yl)butan-2-yl]acetamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Chevalier T. Thomas Elizabeth College for Women, Sembium, Chennai 600 011, India, bCentral Leather Research Institute, Organic Chemistry division, Adyar, Chennai 600 020, India, and cDepartment of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 24 October 2016; accepted 10 November 2016; online 15 November 2016)

In the mol­ecule of the title compound, C14H19N5O, the dihedral angle formed between the tetra­zole and phenyl rings is 68.39 (4)°. In the crystal, mol­ecules are linked by N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds to form two-dimensional networks extending parallel to the bc plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Compounds containing a tetra­zole ring have attracted much attention in medicinal chemistry (Alam & Nasrollahzadeh, 2009[Alam, A. R. M. & Nasrollahzadeh, M. (2009). Turk. J. Chem. 33, 267-280.]). Tetra­zoles are reported to exhibits anti­hypertensive (Sharma et al., 2010[Sharma, M. C., Kohli, D. V. & Sharma, S. (2010). Int. j Drug. Deliv. 2, 228-237.]), anti­microbial (Yildirir et al., 2009[Yıldırır, Y., Us, M. F., Çolak, N., Özkan, H., Yavuz, S., Disli, A., Ozturk, S. & Turker, L. (2009). Med. Chem. Res. 18, 91-97.]), anti­bacterial, anti­fungal (Dhayanithi et al., 2011[Dhayanithi, V., Shafi, S. S., Kumaran, K., Jai, S. K. R., Ragavan, V. R., Goud, K., Sanath, Kumari, S. N. & Pati, H. N. (2011). J. Serb. Chem. Soc. 76, 165-175.]) and anti­cancer activities (Bhaskar & Mohite, 2010[Bhaskar, V. H. & Mohite, P. B. (2010). J. Optoelectron. Biomed. Mater. 2, 249-259.]). These functional units exhibit strong networking ability as ligands. They act as mono-, bi- or multidentate ligands due to the electron-donating nature of the four nitro­gen atoms in the tetra­zole moiety (Wang et al., 2005[Wang, X. S., Tang, Y. Z., Huang, X. F., Qu, Z. R., Che, C. M., Chan, P. W. H. & Xiong, R. G. (2005). Inorg. Chem. 44, 5278-5285.]).

In the title compound (Fig. 1[link]), the bond between the two chiral carbons C7 and C8 acts as the bridge connecting the phenyl ring, the 1-H tetra­zole ring and the acetamide unit. The dihedral angle between the tetra­zole ring (N1–N4, C14) and the phenyl ring (C1–C6) is 68.39 (4)°. The mean plane through the acetamide unit (N5, C12, C13, O1) forms dihedral angles of 62.00 (6) and 13.23 (6)° with the tetra­zole and phenyl rings, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

In the crystal, the mol­ecules are linked through C—H⋯O, C—H⋯N and N—H⋯N hydrogen bonds (Table 1[link]) into two-dimensional networks extending parallel to the bc plane (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯N2i 0.844 (18) 2.452 (18) 3.2579 (17) 160.0 (15)
C6—H6⋯O1ii 0.93 2.43 3.356 (2) 171
C7—H7⋯N3i 0.98 2.48 3.4055 (19) 157
C14—H14⋯O1ii 0.93 2.27 3.1728 (19) 163
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.
[Figure 2]
Figure 2
Partial crystal packing of the title compound showing the formation of a two-dimensional network parallel to the bc plane via N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonds (dashed lines).

Synthesis and crystallization

A Mannich condensation reaction involving benzaldehye (200 mmol), isobutyl methyl ketone (100 mmol) and ammonium acetate (100 mmol) in 70 ml methanol at 70°C for 2 h afforded the respective piperidinone as crystals. The crystals were washed with methanol, dried completely under vacuum, then converted into the hydro­chloride form by dissolving them in 30 ml ethanol and 20 ml ether and adding an equivalent volume of concentrated hydro­chloric acid dropwise. 2 g of the precipitate obtained was gradually added to a beaker containing 10 ml of concentrated sulfuric acid in ice-cold condition, dissolved thoroughly and kept at room temperature with continuous stirring. 0.65 g of sodium azide was then added in small qu­anti­ties to the beaker. On addition of sodium azide, a foam formed which subsequently subsided due to liberation of nitro­gen. The solution was transferred into a beaker containing ice and neutralized with 4 M sodium hydroxide. The white precipitate formed was filtered through a Buchner funnel, vacuum dried and recrystallized with ethanol. The resulting lactam was cleaved under acidic conditions (6 M HCl) to form the substituted vicinal di­amine. Conversion of the hydro­chloride salt of the vicinal di­amine into the free di­amine was performed using 2 mol of sodium acetate. The vicinal di­amine was then converted into acetyl­ated 1-substituted tetra­zole in the presence of 2 mol of sodium azide and 2 mol of triethyl orthoformate at 60°C in a glacial acetic acid medium. The compound obtained was then dissolved in methanol, transferred to a 15 ml vial, and the vial wrapped with tissue paper for controlled evaporation of the solvent without contamination. Single crystals suitable for X-ray analysis were formed after three days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H19N5O
Mr 273.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 9.7056 (6), 7.7663 (5), 20.2620 (9)
β (°) 93.490 (2)
V3) 1524.45 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.35 × 0.30 × 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.740, 0.976
No. of measured, independent and observed [I > 2σ(I)] reflections 10998, 3760, 2712
Rint 0.020
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.134, 1.02
No. of reflections 3760
No. of parameters 188
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.17
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

N-[3-Methyl-1-phenyl-1-(1H-tetrazol-1-yl)butan-2-yl]acetamide top
Crystal data top
C14H19N5OF(000) = 584
Mr = 273.34Dx = 1.191 Mg m3
Monoclinic, P21/cMelting point: 393 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.7056 (6) ÅCell parameters from 3760 reflections
b = 7.7663 (5) Åθ = 2.8–28.3°
c = 20.2620 (9) ŵ = 0.08 mm1
β = 93.490 (2)°T = 296 K
V = 1524.45 (15) Å3Block, colourless
Z = 40.35 × 0.30 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3760 independent reflections
Radiation source: fine-focus sealed tube2712 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Bruker axs kappa apex2 CCD Diffractometer scansθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.740, Tmax = 0.976k = 1010
10998 measured reflectionsl = 2616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.4088P]
where P = (Fo2 + 2Fc2)/3
3760 reflections(Δ/σ)max = 0.010
188 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61825 (12)0.64603 (18)0.04105 (5)0.0600 (3)
N10.43416 (11)0.38123 (15)0.15539 (5)0.0342 (3)
N20.48431 (16)0.3137 (2)0.21287 (6)0.0556 (4)
N30.57528 (16)0.2002 (2)0.19824 (7)0.0605 (4)
N40.58598 (13)0.19027 (18)0.13256 (7)0.0484 (3)
N50.50558 (12)0.72547 (16)0.12972 (6)0.0388 (3)
H5A0.5130 (17)0.774 (2)0.1670 (9)0.049 (5)*
C10.18648 (14)0.44056 (18)0.13683 (7)0.0374 (3)
C20.09223 (18)0.4295 (3)0.18515 (9)0.0616 (5)
H20.11520.47070.22750.074*
C30.0371 (2)0.3568 (3)0.17039 (13)0.0847 (7)
H30.10010.34990.20310.102*
C40.07241 (19)0.2958 (3)0.10887 (13)0.0788 (6)
H40.15900.24740.09950.095*
C50.02009 (18)0.3061 (3)0.06068 (10)0.0631 (5)
H50.00380.26450.01850.076*
C60.14894 (15)0.3779 (2)0.07445 (8)0.0462 (4)
H60.21110.38420.04140.055*
C70.32751 (14)0.51735 (18)0.15342 (6)0.0349 (3)
H70.32680.56740.19780.042*
C80.37089 (14)0.65989 (18)0.10615 (6)0.0349 (3)
H80.38170.60630.06300.042*
C90.26314 (16)0.8039 (2)0.09599 (7)0.0448 (4)
H90.17490.74950.08220.054*
C100.2413 (2)0.9070 (3)0.15828 (9)0.0670 (5)
H10A0.32620.96190.17310.100*
H10B0.21210.83120.19220.100*
H10C0.17170.99290.14890.100*
C110.3024 (2)0.9215 (2)0.04006 (8)0.0606 (5)
H11A0.23281.00840.03260.091*
H11B0.30960.85500.00050.091*
H11C0.38950.97540.05180.091*
C120.61938 (15)0.71366 (19)0.09555 (7)0.0418 (3)
C130.74903 (18)0.7856 (3)0.12893 (10)0.0612 (5)
H13A0.82770.73090.11150.092*
H13B0.74930.76470.17560.092*
H13C0.75310.90740.12100.092*
C140.49788 (15)0.30355 (19)0.10746 (7)0.0412 (3)
H140.48220.32640.06260.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0576 (7)0.0833 (9)0.0399 (6)0.0092 (6)0.0106 (5)0.0082 (6)
N10.0361 (6)0.0374 (6)0.0285 (5)0.0026 (5)0.0029 (4)0.0043 (5)
N20.0667 (9)0.0659 (10)0.0332 (7)0.0124 (8)0.0060 (6)0.0102 (6)
N30.0647 (9)0.0653 (10)0.0501 (8)0.0157 (8)0.0092 (7)0.0129 (7)
N40.0438 (7)0.0479 (8)0.0530 (8)0.0046 (6)0.0004 (6)0.0068 (6)
N50.0420 (7)0.0423 (7)0.0318 (6)0.0075 (5)0.0008 (5)0.0065 (5)
C10.0350 (7)0.0378 (8)0.0399 (7)0.0017 (6)0.0054 (5)0.0063 (6)
C20.0551 (10)0.0821 (14)0.0493 (9)0.0016 (9)0.0179 (8)0.0044 (9)
C30.0517 (11)0.1155 (19)0.0907 (16)0.0091 (12)0.0343 (11)0.0137 (14)
C40.0398 (10)0.0940 (16)0.1027 (17)0.0163 (10)0.0056 (10)0.0085 (14)
C50.0450 (9)0.0713 (13)0.0715 (12)0.0107 (9)0.0085 (8)0.0026 (10)
C60.0370 (7)0.0551 (9)0.0464 (8)0.0064 (7)0.0027 (6)0.0019 (7)
C70.0387 (7)0.0390 (7)0.0270 (6)0.0011 (6)0.0016 (5)0.0017 (5)
C80.0386 (7)0.0351 (7)0.0306 (6)0.0035 (6)0.0009 (5)0.0012 (5)
C90.0461 (8)0.0410 (8)0.0465 (8)0.0017 (7)0.0036 (6)0.0025 (6)
C100.0816 (13)0.0610 (12)0.0592 (11)0.0248 (10)0.0116 (9)0.0017 (9)
C110.0816 (13)0.0461 (10)0.0534 (10)0.0048 (9)0.0025 (9)0.0108 (8)
C120.0440 (8)0.0414 (8)0.0396 (8)0.0044 (7)0.0000 (6)0.0053 (6)
C130.0458 (9)0.0648 (12)0.0720 (12)0.0081 (8)0.0040 (8)0.0034 (9)
C140.0436 (8)0.0442 (8)0.0356 (7)0.0023 (6)0.0014 (6)0.0030 (6)
Geometric parameters (Å, º) top
O1—C121.2221 (18)C5—H50.9300
N1—C141.3276 (18)C6—H60.9300
N1—N21.3413 (16)C7—C81.5392 (19)
N1—C71.4784 (18)C7—H70.9800
N2—N31.295 (2)C8—C91.536 (2)
N3—N41.3434 (19)C8—H80.9800
N4—C141.3079 (19)C9—C101.520 (2)
N5—C121.3420 (19)C9—C111.522 (2)
N5—C81.4562 (17)C9—H90.9800
N5—H5A0.844 (18)C10—H10A0.9600
C1—C61.382 (2)C10—H10B0.9600
C1—C21.383 (2)C10—H10C0.9600
C1—C71.5120 (19)C11—H11A0.9600
C2—C31.392 (3)C11—H11B0.9600
C2—H20.9300C11—H11C0.9600
C3—C41.358 (3)C12—C131.500 (2)
C3—H30.9300C13—H13A0.9600
C4—C51.368 (3)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C5—C61.382 (2)C14—H140.9300
C14—N1—N2107.28 (12)C9—C8—C7113.40 (11)
C14—N1—C7131.43 (11)N5—C8—H8107.4
N2—N1—C7121.30 (11)C9—C8—H8107.4
N3—N2—N1106.48 (12)C7—C8—H8107.4
N2—N3—N4111.16 (12)C10—C9—C11110.85 (15)
C14—N4—N3104.96 (13)C10—C9—C8113.59 (13)
C12—N5—C8123.88 (12)C11—C9—C8109.73 (13)
C12—N5—H5A117.7 (11)C10—C9—H9107.5
C8—N5—H5A118.4 (11)C11—C9—H9107.5
C6—C1—C2118.47 (14)C8—C9—H9107.5
C6—C1—C7121.79 (12)C9—C10—H10A109.5
C2—C1—C7119.73 (14)C9—C10—H10B109.5
C1—C2—C3119.98 (18)H10A—C10—H10B109.5
C1—C2—H2120.0C9—C10—H10C109.5
C3—C2—H2120.0H10A—C10—H10C109.5
C4—C3—C2120.85 (17)H10B—C10—H10C109.5
C4—C3—H3119.6C9—C11—H11A109.5
C2—C3—H3119.6C9—C11—H11B109.5
C3—C4—C5119.66 (18)H11A—C11—H11B109.5
C3—C4—H4120.2C9—C11—H11C109.5
C5—C4—H4120.2H11A—C11—H11C109.5
C4—C5—C6120.27 (19)H11B—C11—H11C109.5
C4—C5—H5119.9O1—C12—N5122.22 (14)
C6—C5—H5119.9O1—C12—C13121.92 (14)
C5—C6—C1120.77 (15)N5—C12—C13115.85 (14)
C5—C6—H6119.6C12—C13—H13A109.5
C1—C6—H6119.6C12—C13—H13B109.5
N1—C7—C1110.29 (11)H13A—C13—H13B109.5
N1—C7—C8108.27 (10)C12—C13—H13C109.5
C1—C7—C8115.06 (11)H13A—C13—H13C109.5
N1—C7—H7107.6H13B—C13—H13C109.5
C1—C7—H7107.6N4—C14—N1110.12 (13)
C8—C7—H7107.6N4—C14—H14124.9
N5—C8—C9112.30 (12)N1—C14—H14124.9
N5—C8—C7108.76 (11)
C14—N1—N2—N30.25 (17)C6—C1—C7—C852.19 (19)
C7—N1—N2—N3179.60 (13)C2—C1—C7—C8128.80 (15)
N1—N2—N3—N40.4 (2)C12—N5—C8—C9116.60 (15)
N2—N3—N4—C140.3 (2)C12—N5—C8—C7117.06 (14)
C6—C1—C2—C30.1 (3)N1—C7—C8—N558.28 (13)
C7—C1—C2—C3179.13 (18)C1—C7—C8—N5177.83 (11)
C1—C2—C3—C40.1 (4)N1—C7—C8—C9176.01 (11)
C2—C3—C4—C50.1 (4)C1—C7—C8—C952.12 (16)
C3—C4—C5—C60.1 (4)N5—C8—C9—C1058.69 (17)
C4—C5—C6—C10.0 (3)C7—C8—C9—C1065.11 (17)
C2—C1—C6—C50.1 (3)N5—C8—C9—C1166.00 (16)
C7—C1—C6—C5179.09 (15)C7—C8—C9—C11170.20 (12)
C14—N1—C7—C180.54 (17)C8—N5—C12—O10.1 (2)
N2—N1—C7—C199.66 (14)C8—N5—C12—C13178.70 (14)
C14—N1—C7—C846.17 (18)N3—N4—C14—N10.15 (18)
N2—N1—C7—C8133.64 (13)N2—N1—C14—N40.06 (17)
C6—C1—C7—N170.63 (16)C7—N1—C14—N4179.77 (13)
C2—C1—C7—N1108.39 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N2i0.844 (18)2.452 (18)3.2579 (17)160.0 (15)
C6—H6···O1ii0.932.433.356 (2)171
C7—H7···N3i0.982.483.4055 (19)157
C14—H14···O1ii0.932.273.1728 (19)163
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z.
 

Acknowledgements

The authors thank the single-crystal XRD facility, SAIF, IIT Madras, Chennai, for the data collection.

References

First citationAlam, A. R. M. & Nasrollahzadeh, M. (2009). Turk. J. Chem. 33, 267–280.  Google Scholar
First citationBhaskar, V. H. & Mohite, P. B. (2010). J. Optoelectron. Biomed. Mater. 2, 249–259.  Google Scholar
First citationBruker (2004). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhayanithi, V., Shafi, S. S., Kumaran, K., Jai, S. K. R., Ragavan, V. R., Goud, K., Sanath, Kumari, S. N. & Pati, H. N. (2011). J. Serb. Chem. Soc. 76, 165–175.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSharma, M. C., Kohli, D. V. & Sharma, S. (2010). Int. j Drug. Deliv. 2, 228–237.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. S., Tang, Y. Z., Huang, X. F., Qu, Z. R., Che, C. M., Chan, P. W. H. & Xiong, R. G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYıldırır, Y., Us, M. F., Çolak, N., Özkan, H., Yavuz, S., Disli, A., Ozturk, S. & Turker, L. (2009). Med. Chem. Res. 18, 91–97.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds