metal-organic compounds
Poly[(μ3-5-hydroxyisophthalato)[μ2-1,1′-(1,4-phenylene)bis(1H-imidazole)]copper]
aPeople's Hospital of Tibet Autonomic Region, Lasa 850000, People's Republic of China
*Correspondence e-mail: taohonghong01@163.com
The title compound, [Cu(C8H4O5)(C12H10N4)]n, was obtained by the reaction of copper(II) nitrate hydrate, with the OH-BDC organic linker and bib molecules [OH-BDC = 5-hydroxyisophthalic acid and bib = 1,4-bis(imidazol-1-yl)benzene]. The comprises one CuII cation, one OH-BDC−2 dianion and a bib ligand. The CuII ion is coordinated by three carboxylate O atoms and two bib-N atoms, all from bridging ligands, to form a slightly distorted trigonal–bipyramidal geometry. The CuII ions are bridged by OH-BDC−2 ligands, forming a chain along the [100] direction; the chains are connected by bib molecules to form a two-dimensional net. In topological terms, considering the CuII atoms as nodes and the OH-BDC−2 ligands as linkers, the two-dimensional structure can be simplified as a typical 2-nodal 3,5 L2 plane network. The features O—H⋯O hydrogen bonds between OH-BDC−2 anions, resulting in a three-dimensional supramolecular network.
Keywords: crystal structure; Cu-based; mixed ligands; hydrogen bonding; 3,5 L2 topology..
CCDC reference: 1515776
Structure description
A variety of metal–organic frameworks with intertesting structures have been reported based on 5-hydroxyisophthalic acid as this kind of carboxylate ligand offers six kinds of intricate connection models (Xu & Li, 2014). Supermolecules constructed by mixed ligands including carboxylate ligands and other N-donor molecules often show interesting networks compared with those compounds constructed by a single ligand (Xu et al., 2015). However, there are only a few examples reported which are based on OH-BDC and bib molecules (Wang et al., 2014; Liu & Guo., 2012; Su et al., 2015; Li et al. 2015; Guo et al., 2013). For this synthesis, we selected OH-BDC, bib organic ligands and copper(II) to construct a new supermolecule and present herein the structure of the title compound (Fig. 1), which is isostructural with the MnII-based analogue, (Li et al., 2015).
The CuII ion is coordinated by three carboxylate O atoms and two bib-N atoms, all from bridging ligands, to form a slightly distorted trigonal–bipyramidal geometry. The CuII ions are bridged by OH-BDC−2 ligands, forming a chain along the [100] direction; the chains are connected by bib molecules to form a two-dimensional net. In topological terms, considering the CuII atoms as nodes and the OH-BDC−2 ligands as linkers, the two-dimensional structure can be simplified as a typical 2-nodal 3,5 L2 plane network.
The ) between OH-BDC−2 anions, resulting in a three-dimensional supramolecular network (Fig. 2).
features O—H⋯O hydrogen bonds (Table 1Synthesis and crystallization
The title complex was synthesized by the reaction of 5-hydroxyisophthalic (9.1 mg, 0.05 mmol), 1,4-bis(1-imidazolyl)benzene (10.5 mg, 0.05 mmol) in 8 ml of deionized water with copper(II) nitrate hydrate (24.1 mg, 0.1 mmol) in 20 ml of methanol and the mixture was refluxed for 0.5 h. To the above mixture, 0.5 ml of formic acid was added and the resulting fluid was placed in a Teflon-lined stainless-steel reactor. The reactor was heated to 413 K for 72 h. It was then cooled to room temperature. Blue block-shaped crystals were isolated in 68% yield (based on the OH-BDC ligand).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1515776
https://doi.org/10.1107/S2414314616018022/lh4014sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616018022/lh4014Isup2.hkl
Data collection: SMART (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(C8H4O5)(C12H10N4)] | Z = 2 |
Mr = 453.89 | F(000) = 462 |
Triclinic, P1 | Dx = 1.582 Mg m−3 |
a = 9.948 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.955 (7) Å | Cell parameters from 2197 reflections |
c = 12.043 (9) Å | θ = 2.3–27.5° |
α = 66.38 (3)° | µ = 1.19 mm−1 |
β = 82.99 (4)° | T = 296 K |
γ = 61.08 (2)° | Block, blue |
V = 952.6 (12) Å3 | 0.22 × 0.20 × 0.18 mm |
Bruker SMART 1000 CCD diffractometer | 3126 reflections with I > 2σ(I) |
Detector resolution: 13.6612 pixels mm-1 | Rint = 0.071 |
φ and ω scans | θmax = 27.4°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | h = −12→12 |
Tmin = 0.853, Tmax = 1 | k = −12→12 |
10124 measured reflections | l = −15→15 |
4299 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.055 | H-atom parameters constrained |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0495P)2 + 0.2061P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
4299 reflections | Δρmax = 0.46 e Å−3 |
272 parameters | Δρmin = −0.69 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.66754 (5) | 0.97776 (6) | 0.39574 (4) | 0.02984 (16) | |
O3 | −0.1299 (3) | 0.9861 (3) | 0.3440 (2) | 0.0344 (6) | |
O1 | 0.5542 (3) | 0.8764 (3) | 0.3623 (2) | 0.0354 (6) | |
O2 | 0.3725 (3) | 0.8802 (3) | 0.4950 (2) | 0.0392 (7) | |
O4 | −0.1334 (3) | 0.9181 (3) | 0.1879 (2) | 0.0406 (7) | |
O5 | 0.3567 (3) | 0.9019 (4) | −0.0074 (2) | 0.0511 (8) | |
H5 | 0.2856 | 0.9594 | −0.0613 | 0.077* | |
N4 | 1.5339 (3) | 0.1951 (4) | 1.2624 (3) | 0.0312 (7) | |
N3 | 1.3643 (3) | 0.3795 (4) | 1.1009 (3) | 0.0291 (7) | |
N2 | 0.9579 (3) | 0.6014 (4) | 0.7009 (3) | 0.0321 (7) | |
N1 | 0.7931 (3) | 0.7678 (4) | 0.5370 (3) | 0.0355 (8) | |
C18 | 1.4343 (4) | 0.2190 (4) | 1.1838 (3) | 0.0280 (8) | |
H18 | 1.4147 | 0.1361 | 1.1851 | 0.034* | |
C2 | 0.3368 (4) | 0.8714 (4) | 0.3064 (3) | 0.0247 (7) | |
C8 | −0.0688 (4) | 0.9388 (4) | 0.2585 (3) | 0.0266 (8) | |
C3 | 0.3912 (4) | 0.8762 (4) | 0.1931 (3) | 0.0299 (8) | |
H3 | 0.4888 | 0.8661 | 0.1775 | 0.036* | |
C4 | 0.2985 (4) | 0.8964 (5) | 0.1030 (3) | 0.0308 (8) | |
C15 | 1.2612 (4) | 0.4388 (4) | 0.9979 (3) | 0.0274 (8) | |
C1 | 0.4282 (4) | 0.8745 (4) | 0.3975 (3) | 0.0263 (7) | |
C6 | 0.0964 (4) | 0.9072 (4) | 0.2403 (3) | 0.0239 (7) | |
C7 | 0.1893 (4) | 0.8869 (4) | 0.3304 (3) | 0.0248 (7) | |
H7 | 0.1534 | 0.8837 | 0.4059 | 0.030* | |
C5 | 0.1535 (4) | 0.9073 (4) | 0.1281 (3) | 0.0286 (8) | |
H5A | 0.0943 | 0.9148 | 0.0697 | 0.034* | |
C14 | 1.2764 (4) | 0.3285 (5) | 0.9494 (3) | 0.0347 (9) | |
H14 | 1.3533 | 0.2179 | 0.9830 | 0.042* | |
C9 | 0.8926 (4) | 0.7547 (5) | 0.6102 (3) | 0.0352 (9) | |
H9 | 0.9143 | 0.8397 | 0.6002 | 0.042* | |
C12 | 1.0637 (4) | 0.5460 (4) | 0.8018 (3) | 0.0304 (8) | |
C19 | 1.5278 (4) | 0.3485 (5) | 1.2289 (3) | 0.0404 (10) | |
H19 | 1.5854 | 0.3699 | 1.2684 | 0.048* | |
C13 | 1.1777 (4) | 0.3812 (5) | 0.8507 (3) | 0.0381 (9) | |
H13 | 1.1882 | 0.3065 | 0.8182 | 0.046* | |
C20 | 1.4249 (5) | 0.4632 (5) | 1.1296 (3) | 0.0394 (9) | |
H20 | 1.4001 | 0.5749 | 1.0890 | 0.047* | |
C16 | 1.1469 (5) | 0.6036 (5) | 0.9492 (3) | 0.0412 (10) | |
H16 | 1.1364 | 0.6780 | 0.9820 | 0.049* | |
C17 | 1.0476 (5) | 0.6568 (5) | 0.8506 (4) | 0.0417 (10) | |
H17 | 0.9703 | 0.7672 | 0.8176 | 0.050* | |
C10 | 0.8973 (5) | 0.5107 (5) | 0.6846 (4) | 0.0459 (11) | |
H10 | 0.9208 | 0.4008 | 0.7328 | 0.055* | |
C11 | 0.7964 (5) | 0.6151 (5) | 0.5838 (4) | 0.0443 (10) | |
H11 | 0.7380 | 0.5877 | 0.5509 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0259 (2) | 0.0386 (3) | 0.0216 (2) | −0.0161 (2) | −0.00973 (17) | −0.00445 (18) |
O3 | 0.0231 (13) | 0.0513 (16) | 0.0316 (14) | −0.0191 (12) | 0.0030 (11) | −0.0176 (12) |
O1 | 0.0285 (14) | 0.0472 (16) | 0.0326 (14) | −0.0191 (13) | −0.0073 (11) | −0.0136 (12) |
O2 | 0.0402 (15) | 0.0571 (17) | 0.0255 (14) | −0.0213 (14) | −0.0022 (12) | −0.0219 (12) |
O4 | 0.0300 (14) | 0.0565 (18) | 0.0461 (17) | −0.0231 (14) | −0.0032 (12) | −0.0252 (14) |
O5 | 0.0291 (15) | 0.095 (2) | 0.0294 (15) | −0.0217 (16) | 0.0039 (12) | −0.0355 (16) |
N4 | 0.0270 (16) | 0.0384 (18) | 0.0226 (15) | −0.0132 (14) | −0.0073 (12) | −0.0074 (13) |
N3 | 0.0300 (16) | 0.0303 (16) | 0.0223 (15) | −0.0115 (14) | −0.0065 (12) | −0.0072 (12) |
N2 | 0.0293 (16) | 0.0287 (16) | 0.0274 (16) | −0.0092 (14) | −0.0139 (13) | −0.0021 (13) |
N1 | 0.0304 (17) | 0.0398 (19) | 0.0303 (17) | −0.0169 (15) | −0.0143 (13) | −0.0035 (14) |
C18 | 0.0252 (18) | 0.035 (2) | 0.0220 (18) | −0.0112 (16) | −0.0049 (14) | −0.0120 (15) |
C2 | 0.0236 (17) | 0.0282 (18) | 0.0225 (17) | −0.0115 (15) | −0.0050 (14) | −0.0093 (14) |
C8 | 0.0243 (18) | 0.0269 (18) | 0.0274 (19) | −0.0137 (15) | −0.0050 (14) | −0.0056 (14) |
C3 | 0.0180 (17) | 0.042 (2) | 0.0304 (19) | −0.0116 (16) | −0.0005 (14) | −0.0181 (16) |
C4 | 0.0252 (18) | 0.042 (2) | 0.0240 (18) | −0.0108 (17) | −0.0002 (14) | −0.0172 (16) |
C15 | 0.0213 (17) | 0.0310 (19) | 0.0203 (17) | −0.0071 (15) | −0.0061 (13) | −0.0060 (14) |
C1 | 0.0257 (18) | 0.0239 (17) | 0.0240 (18) | −0.0099 (15) | −0.0092 (14) | −0.0039 (14) |
C6 | 0.0211 (17) | 0.0271 (18) | 0.0243 (17) | −0.0121 (15) | −0.0028 (13) | −0.0087 (14) |
C7 | 0.0254 (18) | 0.0315 (18) | 0.0203 (17) | −0.0137 (16) | 0.0002 (13) | −0.0123 (14) |
C5 | 0.0213 (17) | 0.038 (2) | 0.0278 (18) | −0.0105 (16) | −0.0061 (14) | −0.0167 (15) |
C14 | 0.0271 (19) | 0.032 (2) | 0.0278 (19) | 0.0009 (16) | −0.0112 (15) | −0.0108 (15) |
C9 | 0.033 (2) | 0.035 (2) | 0.032 (2) | −0.0160 (18) | −0.0146 (16) | −0.0040 (16) |
C12 | 0.0252 (18) | 0.0308 (19) | 0.0250 (19) | −0.0078 (16) | −0.0100 (14) | −0.0052 (15) |
C19 | 0.045 (2) | 0.050 (2) | 0.031 (2) | −0.027 (2) | −0.0122 (17) | −0.0094 (18) |
C13 | 0.038 (2) | 0.036 (2) | 0.032 (2) | −0.0065 (18) | −0.0131 (17) | −0.0140 (17) |
C20 | 0.050 (2) | 0.034 (2) | 0.035 (2) | −0.022 (2) | −0.0095 (18) | −0.0083 (17) |
C16 | 0.046 (2) | 0.032 (2) | 0.039 (2) | −0.0102 (19) | −0.0174 (18) | −0.0114 (17) |
C17 | 0.046 (2) | 0.0236 (19) | 0.042 (2) | −0.0079 (18) | −0.0210 (19) | −0.0053 (17) |
C10 | 0.054 (3) | 0.034 (2) | 0.044 (2) | −0.023 (2) | −0.019 (2) | −0.0016 (18) |
C11 | 0.048 (3) | 0.038 (2) | 0.046 (2) | −0.023 (2) | −0.022 (2) | −0.0053 (18) |
Cu1—N1 | 1.992 (3) | C2—C1 | 1.527 (4) |
Cu1—N4i | 1.995 (3) | C8—C6 | 1.521 (5) |
Cu1—O1 | 1.997 (3) | C3—C4 | 1.399 (5) |
Cu1—O3ii | 2.066 (3) | C3—H3 | 0.9300 |
Cu1—O2iii | 2.170 (3) | C4—C5 | 1.397 (5) |
O3—C8 | 1.269 (4) | C15—C14 | 1.379 (5) |
O3—Cu1iv | 2.066 (3) | C15—C16 | 1.384 (5) |
O1—C1 | 1.280 (4) | C6—C7 | 1.400 (4) |
O2—C1 | 1.246 (4) | C6—C5 | 1.399 (5) |
O2—Cu1iii | 2.170 (3) | C7—H7 | 0.9300 |
O4—C8 | 1.257 (4) | C5—H5A | 0.9300 |
O5—C4 | 1.376 (4) | C14—C13 | 1.393 (5) |
O5—H5 | 0.8200 | C14—H14 | 0.9300 |
N4—C18 | 1.324 (4) | C9—H9 | 0.9300 |
N4—C19 | 1.387 (5) | C12—C13 | 1.384 (5) |
N4—Cu1v | 1.995 (3) | C12—C17 | 1.384 (5) |
N3—C18 | 1.360 (4) | C19—C20 | 1.363 (5) |
N3—C20 | 1.394 (5) | C19—H19 | 0.9300 |
N3—C15 | 1.441 (4) | C13—H13 | 0.9300 |
N2—C9 | 1.351 (5) | C20—H20 | 0.9300 |
N2—C10 | 1.384 (5) | C16—C17 | 1.393 (5) |
N2—C12 | 1.449 (4) | C16—H16 | 0.9300 |
N1—C9 | 1.331 (4) | C17—H17 | 0.9300 |
N1—C11 | 1.378 (5) | C10—C11 | 1.356 (5) |
C18—H18 | 0.9300 | C10—H10 | 0.9300 |
C2—C3 | 1.397 (5) | C11—H11 | 0.9300 |
C2—C7 | 1.405 (5) | ||
N1—Cu1—N4i | 176.06 (13) | C16—C15—N3 | 120.6 (3) |
N1—Cu1—O1 | 91.42 (13) | O2—C1—O1 | 126.8 (3) |
N4i—Cu1—O1 | 89.73 (13) | O2—C1—C2 | 118.2 (3) |
N1—Cu1—O3ii | 87.23 (13) | O1—C1—C2 | 115.0 (3) |
N4i—Cu1—O3ii | 94.62 (12) | C7—C6—C5 | 119.4 (3) |
O1—Cu1—O3ii | 134.81 (11) | C7—C6—C8 | 121.6 (3) |
N1—Cu1—O2iii | 89.72 (13) | C5—C6—C8 | 118.9 (3) |
N4i—Cu1—O2iii | 86.76 (13) | C6—C7—C2 | 119.9 (3) |
O1—Cu1—O2iii | 133.92 (11) | C6—C7—H7 | 120.1 |
O3ii—Cu1—O2iii | 91.26 (11) | C2—C7—H7 | 120.1 |
C8—O3—Cu1iv | 116.7 (2) | C4—C5—C6 | 120.7 (3) |
C1—O1—Cu1 | 132.2 (2) | C4—C5—H5A | 119.6 |
C1—O2—Cu1iii | 137.8 (2) | C6—C5—H5A | 119.6 |
C4—O5—H5 | 109.5 | C15—C14—C13 | 120.6 (3) |
C18—N4—C19 | 105.6 (3) | C15—C14—H14 | 119.7 |
C18—N4—Cu1v | 125.6 (3) | C13—C14—H14 | 119.7 |
C19—N4—Cu1v | 128.7 (2) | N1—C9—N2 | 110.8 (3) |
C18—N3—C20 | 106.4 (3) | N1—C9—H9 | 124.6 |
C18—N3—C15 | 124.3 (3) | N2—C9—H9 | 124.6 |
C20—N3—C15 | 128.9 (3) | C13—C12—C17 | 120.4 (3) |
C9—N2—C10 | 107.5 (3) | C13—C12—N2 | 119.6 (3) |
C9—N2—C12 | 126.1 (3) | C17—C12—N2 | 120.0 (3) |
C10—N2—C12 | 126.2 (3) | C20—C19—N4 | 109.8 (3) |
C9—N1—C11 | 105.7 (3) | C20—C19—H19 | 125.1 |
C9—N1—Cu1 | 122.9 (3) | N4—C19—H19 | 125.1 |
C11—N1—Cu1 | 131.3 (2) | C12—C13—C14 | 119.1 (3) |
N4—C18—N3 | 111.9 (3) | C12—C13—H13 | 120.4 |
N4—C18—H18 | 124.1 | C14—C13—H13 | 120.4 |
N3—C18—H18 | 124.1 | C19—C20—N3 | 106.3 (3) |
C3—C2—C7 | 120.3 (3) | C19—C20—H20 | 126.9 |
C3—C2—C1 | 119.5 (3) | N3—C20—H20 | 126.9 |
C7—C2—C1 | 119.6 (3) | C15—C16—C17 | 119.3 (4) |
O4—C8—O3 | 125.7 (3) | C15—C16—H16 | 120.4 |
O4—C8—C6 | 118.0 (3) | C17—C16—H16 | 120.4 |
O3—C8—C6 | 116.3 (3) | C12—C17—C16 | 120.3 (3) |
C2—C3—C4 | 119.9 (3) | C12—C17—H17 | 119.9 |
C2—C3—H3 | 120.1 | C16—C17—H17 | 119.9 |
C4—C3—H3 | 120.1 | C11—C10—N2 | 105.8 (3) |
O5—C4—C5 | 122.6 (3) | C11—C10—H10 | 127.1 |
O5—C4—C3 | 117.7 (3) | N2—C10—H10 | 127.1 |
C5—C4—C3 | 119.7 (3) | C10—C11—N1 | 110.2 (3) |
C14—C15—C16 | 120.3 (3) | C10—C11—H11 | 124.9 |
C14—C15—N3 | 119.1 (3) | N1—C11—H11 | 124.9 |
Symmetry codes: (i) x−1, y+1, z−1; (ii) x+1, y, z; (iii) −x+1, −y+2, −z+1; (iv) x−1, y, z; (v) x+1, y−1, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O4vi | 0.82 | 1.84 | 2.660 (4) | 177 |
Symmetry code: (vi) −x, −y+2, −z. |
References
Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Guo, F., Zhu, B. Y., Xu, G. L., Zhang, M. M., Zhang, X. L. & Zhang, J. (2013). J. Solid State Chem. 199, 42–48. Web of Science CSD CrossRef CAS Google Scholar
Li, X. J., Su, Y. Q., Li, X. X., Ma, G. C. & Ling, Q. D. (2015). Eur. J. Inorg. Chem. pp. 3274–3284. Web of Science CSD CrossRef Google Scholar
Liu, H. C. & Guo, F. (2012). J. Inorg. Organomet. Polym. 22, 1391–1396. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, Y. Q., Li, X. X., Li, X. J., Pan, H. & Wang, R. H. (2015). CrystEngComm, 17, 4883–4894. Web of Science CSD CrossRef CAS Google Scholar
Wang, A. D., Hu, F. K., Ke, Z. C., Fang, C. & Wei, W. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 656–659. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, H. T. & Li, Y. D. (2004). J. Mol. Struct. 690, 137–143. Web of Science CSD CrossRef CAS Google Scholar
Xu, G. W., Wu, Y. P., Wang, H. B., Wang, Y. N., Li, D. S. & Liu, Y. L. (2015). CrystEngComm, 17, 9055–9061. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.