metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[(μ3-5-hy­dr­oxy­isophthalato)[μ2-1,1′-(1,4-phenyl­ene)bis­­(1H-imidazole)]­copper]

CROSSMARK_Color_square_no_text.svg

aPeople's Hospital of Tibet Autonomic Region, Lasa 850000, People's Republic of China
*Correspondence e-mail: taohonghong01@163.com

Edited by A. J. Lough, University of Toronto, Canada (Received 20 October 2016; accepted 9 November 2016; online 15 November 2016)

The title compound, [Cu(C8H4O5)(C12H10N4)]n, was obtained by the reaction of copper(II) nitrate hydrate, with the OH-BDC organic linker and bib mol­ecules [OH-BDC = 5-hy­droxy­isophthalic acid and bib = 1,4-bis­(imidazol-1-yl)benzene]. The asymmetric unit comprises one CuII cation, one OH-BDC−2 dianion and a bib ligand. The CuII ion is coordinated by three carboxyl­ate O atoms and two bib-N atoms, all from bridging ligands, to form a slightly distorted trigonal–bipyramidal geometry. The CuII ions are bridged by OH-BDC−2 ligands, forming a chain along the [100] direction; the chains are connected by bib mol­ecules to form a two-dimensional net. In topological terms, considering the CuII atoms as nodes and the OH-BDC−2 ligands as linkers, the two-dimensional structure can be simplified as a typical 2-nodal 3,5 L2 plane network. The crystal structure features O—H⋯O hydrogen bonds between OH-BDC−2 anions, resulting in a three-dimensional supra­molecular network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A variety of metal–organic frameworks with inter­testing structures have been reported based on 5-hy­droxy­isophthalic acid as this kind of carboxyl­ate ligand offers six kinds of intricate connection models (Xu & Li, 2014[Xu, H. T. & Li, Y. D. (2004). J. Mol. Struct. 690, 137-143.]). Supermolecules constructed by mixed ligands including carboxyl­ate ligands and other N-donor mol­ecules often show inter­esting networks compared with those compounds constructed by a single ligand (Xu et al., 2015[Xu, G. W., Wu, Y. P., Wang, H. B., Wang, Y. N., Li, D. S. & Liu, Y. L. (2015). CrystEngComm, 17, 9055-9061.]). However, there are only a few examples reported which are based on OH-BDC and bib mol­ecules (Wang et al., 2014[Wang, A. D., Hu, F. K., Ke, Z. C., Fang, C. & Wei, W. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 656-659.]; Liu & Guo., 2012[Liu, H. C. & Guo, F. (2012). J. Inorg. Organomet. Polym. 22, 1391-1396.]; Su et al., 2015[Su, Y. Q., Li, X. X., Li, X. J., Pan, H. & Wang, R. H. (2015). CrystEngComm, 17, 4883-4894.]; Li et al. 2015[Li, X. J., Su, Y. Q., Li, X. X., Ma, G. C. & Ling, Q. D. (2015). Eur. J. Inorg. Chem. pp. 3274-3284.]; Guo et al., 2013[Guo, F., Zhu, B. Y., Xu, G. L., Zhang, M. M., Zhang, X. L. & Zhang, J. (2013). J. Solid State Chem. 199, 42-48.]). For this synthesis, we selected OH-BDC, bib organic ligands and copper(II) to construct a new supermolecule and present herein the structure of the title compound (Fig. 1[link]), which is isostructural with the MnII-based analogue, (Li et al., 2015[Li, X. J., Su, Y. Q., Li, X. X., Ma, G. C. & Ling, Q. D. (2015). Eur. J. Inorg. Chem. pp. 3274-3284.]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing some symmetry-related atoms. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x − 1, y + 1, z − 1; (ii) x + 1, y,z; (iii) −x + 1, −y + 2, −z + 1; (iv) x − 1, y, z; (v) x + 1, y − 1, z + 1.]

The CuII ion is coordinated by three carboxyl­ate O atoms and two bib-N atoms, all from bridging ligands, to form a slightly distorted trigonal–bipyramidal geometry. The CuII ions are bridged by OH-BDC−2 ligands, forming a chain along the [100] direction; the chains are connected by bib mol­ecules to form a two-dimensional net. In topological terms, considering the CuII atoms as nodes and the OH-BDC−2 ligands as linkers, the two-dimensional structure can be simplified as a typical 2-nodal 3,5 L2 plane network.

The crystal structure features O—H⋯O hydrogen bonds (Table 1[link]) between OH-BDC−2 anions, resulting in a three-dimensional supra­molecular network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4i 0.82 1.84 2.660 (4) 177
Symmetry code: (i) -x, -y+2, -z.
[Figure 2]
Figure 2
The crystal packing of the title complex, viewed along the b axis, with O—H hydrogen bonds shown as dashed lines.

Synthesis and crystallization

The title complex was synthesized by the reaction of 5-hy­droxy­isophthalic (9.1 mg, 0.05 mmol), 1,4-bis­(1-imidazol­yl)benzene (10.5 mg, 0.05 mmol) in 8 ml of deionized water with copper(II) nitrate hydrate (24.1 mg, 0.1 mmol) in 20 ml of methanol and the mixture was refluxed for 0.5 h. To the above mixture, 0.5 ml of formic acid was added and the resulting fluid was placed in a Teflon-lined stainless-steel reactor. The reactor was heated to 413 K for 72 h. It was then cooled to room temperature. Blue block-shaped crystals were isolated in 68% yield (based on the OH-BDC ligand).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C8H4O5)(C12H10N4)]
Mr 453.89
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.948 (8), 9.955 (7), 12.043 (9)
α, β, γ (°) 66.38 (3), 82.99 (4), 61.08 (2)
V3) 952.6 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.19
Crystal size (mm) 0.22 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker SMART 1000 CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.853, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 10124, 4299, 3126
Rint 0.071
(sin θ/λ)max−1) 0.647
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.130, 1.04
No. of reflections 4299
No. of parameters 272
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.69
Computer programs: SMART and SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[(µ3-5-hydroxyisophthalato)[µ2-1,1'-(1,4-phenylene)bis(1H-imidazole)]copper] top
Crystal data top
[Cu(C8H4O5)(C12H10N4)]Z = 2
Mr = 453.89F(000) = 462
Triclinic, P1Dx = 1.582 Mg m3
a = 9.948 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.955 (7) ÅCell parameters from 2197 reflections
c = 12.043 (9) Åθ = 2.3–27.5°
α = 66.38 (3)°µ = 1.19 mm1
β = 82.99 (4)°T = 296 K
γ = 61.08 (2)°Block, blue
V = 952.6 (12) Å30.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3126 reflections with I > 2σ(I)
Detector resolution: 13.6612 pixels mm-1Rint = 0.071
φ and ω scansθmax = 27.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1212
Tmin = 0.853, Tmax = 1k = 1212
10124 measured reflectionsl = 1515
4299 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.2061P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4299 reflectionsΔρmax = 0.46 e Å3
272 parametersΔρmin = 0.69 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.66754 (5)0.97776 (6)0.39574 (4)0.02984 (16)
O30.1299 (3)0.9861 (3)0.3440 (2)0.0344 (6)
O10.5542 (3)0.8764 (3)0.3623 (2)0.0354 (6)
O20.3725 (3)0.8802 (3)0.4950 (2)0.0392 (7)
O40.1334 (3)0.9181 (3)0.1879 (2)0.0406 (7)
O50.3567 (3)0.9019 (4)0.0074 (2)0.0511 (8)
H50.28560.95940.06130.077*
N41.5339 (3)0.1951 (4)1.2624 (3)0.0312 (7)
N31.3643 (3)0.3795 (4)1.1009 (3)0.0291 (7)
N20.9579 (3)0.6014 (4)0.7009 (3)0.0321 (7)
N10.7931 (3)0.7678 (4)0.5370 (3)0.0355 (8)
C181.4343 (4)0.2190 (4)1.1838 (3)0.0280 (8)
H181.41470.13611.18510.034*
C20.3368 (4)0.8714 (4)0.3064 (3)0.0247 (7)
C80.0688 (4)0.9388 (4)0.2585 (3)0.0266 (8)
C30.3912 (4)0.8762 (4)0.1931 (3)0.0299 (8)
H30.48880.86610.17750.036*
C40.2985 (4)0.8964 (5)0.1030 (3)0.0308 (8)
C151.2612 (4)0.4388 (4)0.9979 (3)0.0274 (8)
C10.4282 (4)0.8745 (4)0.3975 (3)0.0263 (7)
C60.0964 (4)0.9072 (4)0.2403 (3)0.0239 (7)
C70.1893 (4)0.8869 (4)0.3304 (3)0.0248 (7)
H70.15340.88370.40590.030*
C50.1535 (4)0.9073 (4)0.1281 (3)0.0286 (8)
H5A0.09430.91480.06970.034*
C141.2764 (4)0.3285 (5)0.9494 (3)0.0347 (9)
H141.35330.21790.98300.042*
C90.8926 (4)0.7547 (5)0.6102 (3)0.0352 (9)
H90.91430.83970.60020.042*
C121.0637 (4)0.5460 (4)0.8018 (3)0.0304 (8)
C191.5278 (4)0.3485 (5)1.2289 (3)0.0404 (10)
H191.58540.36991.26840.048*
C131.1777 (4)0.3812 (5)0.8507 (3)0.0381 (9)
H131.18820.30650.81820.046*
C201.4249 (5)0.4632 (5)1.1296 (3)0.0394 (9)
H201.40010.57491.08900.047*
C161.1469 (5)0.6036 (5)0.9492 (3)0.0412 (10)
H161.13640.67800.98200.049*
C171.0476 (5)0.6568 (5)0.8506 (4)0.0417 (10)
H170.97030.76720.81760.050*
C100.8973 (5)0.5107 (5)0.6846 (4)0.0459 (11)
H100.92080.40080.73280.055*
C110.7964 (5)0.6151 (5)0.5838 (4)0.0443 (10)
H110.73800.58770.55090.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0259 (2)0.0386 (3)0.0216 (2)0.0161 (2)0.00973 (17)0.00445 (18)
O30.0231 (13)0.0513 (16)0.0316 (14)0.0191 (12)0.0030 (11)0.0176 (12)
O10.0285 (14)0.0472 (16)0.0326 (14)0.0191 (13)0.0073 (11)0.0136 (12)
O20.0402 (15)0.0571 (17)0.0255 (14)0.0213 (14)0.0022 (12)0.0219 (12)
O40.0300 (14)0.0565 (18)0.0461 (17)0.0231 (14)0.0032 (12)0.0252 (14)
O50.0291 (15)0.095 (2)0.0294 (15)0.0217 (16)0.0039 (12)0.0355 (16)
N40.0270 (16)0.0384 (18)0.0226 (15)0.0132 (14)0.0073 (12)0.0074 (13)
N30.0300 (16)0.0303 (16)0.0223 (15)0.0115 (14)0.0065 (12)0.0072 (12)
N20.0293 (16)0.0287 (16)0.0274 (16)0.0092 (14)0.0139 (13)0.0021 (13)
N10.0304 (17)0.0398 (19)0.0303 (17)0.0169 (15)0.0143 (13)0.0035 (14)
C180.0252 (18)0.035 (2)0.0220 (18)0.0112 (16)0.0049 (14)0.0120 (15)
C20.0236 (17)0.0282 (18)0.0225 (17)0.0115 (15)0.0050 (14)0.0093 (14)
C80.0243 (18)0.0269 (18)0.0274 (19)0.0137 (15)0.0050 (14)0.0056 (14)
C30.0180 (17)0.042 (2)0.0304 (19)0.0116 (16)0.0005 (14)0.0181 (16)
C40.0252 (18)0.042 (2)0.0240 (18)0.0108 (17)0.0002 (14)0.0172 (16)
C150.0213 (17)0.0310 (19)0.0203 (17)0.0071 (15)0.0061 (13)0.0060 (14)
C10.0257 (18)0.0239 (17)0.0240 (18)0.0099 (15)0.0092 (14)0.0039 (14)
C60.0211 (17)0.0271 (18)0.0243 (17)0.0121 (15)0.0028 (13)0.0087 (14)
C70.0254 (18)0.0315 (18)0.0203 (17)0.0137 (16)0.0002 (13)0.0123 (14)
C50.0213 (17)0.038 (2)0.0278 (18)0.0105 (16)0.0061 (14)0.0167 (15)
C140.0271 (19)0.032 (2)0.0278 (19)0.0009 (16)0.0112 (15)0.0108 (15)
C90.033 (2)0.035 (2)0.032 (2)0.0160 (18)0.0146 (16)0.0040 (16)
C120.0252 (18)0.0308 (19)0.0250 (19)0.0078 (16)0.0100 (14)0.0052 (15)
C190.045 (2)0.050 (2)0.031 (2)0.027 (2)0.0122 (17)0.0094 (18)
C130.038 (2)0.036 (2)0.032 (2)0.0065 (18)0.0131 (17)0.0140 (17)
C200.050 (2)0.034 (2)0.035 (2)0.022 (2)0.0095 (18)0.0083 (17)
C160.046 (2)0.032 (2)0.039 (2)0.0102 (19)0.0174 (18)0.0114 (17)
C170.046 (2)0.0236 (19)0.042 (2)0.0079 (18)0.0210 (19)0.0053 (17)
C100.054 (3)0.034 (2)0.044 (2)0.023 (2)0.019 (2)0.0016 (18)
C110.048 (3)0.038 (2)0.046 (2)0.023 (2)0.022 (2)0.0053 (18)
Geometric parameters (Å, º) top
Cu1—N11.992 (3)C2—C11.527 (4)
Cu1—N4i1.995 (3)C8—C61.521 (5)
Cu1—O11.997 (3)C3—C41.399 (5)
Cu1—O3ii2.066 (3)C3—H30.9300
Cu1—O2iii2.170 (3)C4—C51.397 (5)
O3—C81.269 (4)C15—C141.379 (5)
O3—Cu1iv2.066 (3)C15—C161.384 (5)
O1—C11.280 (4)C6—C71.400 (4)
O2—C11.246 (4)C6—C51.399 (5)
O2—Cu1iii2.170 (3)C7—H70.9300
O4—C81.257 (4)C5—H5A0.9300
O5—C41.376 (4)C14—C131.393 (5)
O5—H50.8200C14—H140.9300
N4—C181.324 (4)C9—H90.9300
N4—C191.387 (5)C12—C131.384 (5)
N4—Cu1v1.995 (3)C12—C171.384 (5)
N3—C181.360 (4)C19—C201.363 (5)
N3—C201.394 (5)C19—H190.9300
N3—C151.441 (4)C13—H130.9300
N2—C91.351 (5)C20—H200.9300
N2—C101.384 (5)C16—C171.393 (5)
N2—C121.449 (4)C16—H160.9300
N1—C91.331 (4)C17—H170.9300
N1—C111.378 (5)C10—C111.356 (5)
C18—H180.9300C10—H100.9300
C2—C31.397 (5)C11—H110.9300
C2—C71.405 (5)
N1—Cu1—N4i176.06 (13)C16—C15—N3120.6 (3)
N1—Cu1—O191.42 (13)O2—C1—O1126.8 (3)
N4i—Cu1—O189.73 (13)O2—C1—C2118.2 (3)
N1—Cu1—O3ii87.23 (13)O1—C1—C2115.0 (3)
N4i—Cu1—O3ii94.62 (12)C7—C6—C5119.4 (3)
O1—Cu1—O3ii134.81 (11)C7—C6—C8121.6 (3)
N1—Cu1—O2iii89.72 (13)C5—C6—C8118.9 (3)
N4i—Cu1—O2iii86.76 (13)C6—C7—C2119.9 (3)
O1—Cu1—O2iii133.92 (11)C6—C7—H7120.1
O3ii—Cu1—O2iii91.26 (11)C2—C7—H7120.1
C8—O3—Cu1iv116.7 (2)C4—C5—C6120.7 (3)
C1—O1—Cu1132.2 (2)C4—C5—H5A119.6
C1—O2—Cu1iii137.8 (2)C6—C5—H5A119.6
C4—O5—H5109.5C15—C14—C13120.6 (3)
C18—N4—C19105.6 (3)C15—C14—H14119.7
C18—N4—Cu1v125.6 (3)C13—C14—H14119.7
C19—N4—Cu1v128.7 (2)N1—C9—N2110.8 (3)
C18—N3—C20106.4 (3)N1—C9—H9124.6
C18—N3—C15124.3 (3)N2—C9—H9124.6
C20—N3—C15128.9 (3)C13—C12—C17120.4 (3)
C9—N2—C10107.5 (3)C13—C12—N2119.6 (3)
C9—N2—C12126.1 (3)C17—C12—N2120.0 (3)
C10—N2—C12126.2 (3)C20—C19—N4109.8 (3)
C9—N1—C11105.7 (3)C20—C19—H19125.1
C9—N1—Cu1122.9 (3)N4—C19—H19125.1
C11—N1—Cu1131.3 (2)C12—C13—C14119.1 (3)
N4—C18—N3111.9 (3)C12—C13—H13120.4
N4—C18—H18124.1C14—C13—H13120.4
N3—C18—H18124.1C19—C20—N3106.3 (3)
C3—C2—C7120.3 (3)C19—C20—H20126.9
C3—C2—C1119.5 (3)N3—C20—H20126.9
C7—C2—C1119.6 (3)C15—C16—C17119.3 (4)
O4—C8—O3125.7 (3)C15—C16—H16120.4
O4—C8—C6118.0 (3)C17—C16—H16120.4
O3—C8—C6116.3 (3)C12—C17—C16120.3 (3)
C2—C3—C4119.9 (3)C12—C17—H17119.9
C2—C3—H3120.1C16—C17—H17119.9
C4—C3—H3120.1C11—C10—N2105.8 (3)
O5—C4—C5122.6 (3)C11—C10—H10127.1
O5—C4—C3117.7 (3)N2—C10—H10127.1
C5—C4—C3119.7 (3)C10—C11—N1110.2 (3)
C14—C15—C16120.3 (3)C10—C11—H11124.9
C14—C15—N3119.1 (3)N1—C11—H11124.9
Symmetry codes: (i) x1, y+1, z1; (ii) x+1, y, z; (iii) x+1, y+2, z+1; (iv) x1, y, z; (v) x+1, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O4vi0.821.842.660 (4)177
Symmetry code: (vi) x, y+2, z.
 

References

First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, F., Zhu, B. Y., Xu, G. L., Zhang, M. M., Zhang, X. L. & Zhang, J. (2013). J. Solid State Chem. 199, 42–48.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X. J., Su, Y. Q., Li, X. X., Ma, G. C. & Ling, Q. D. (2015). Eur. J. Inorg. Chem. pp. 3274–3284.  Web of Science CSD CrossRef Google Scholar
First citationLiu, H. C. & Guo, F. (2012). J. Inorg. Organomet. Polym. 22, 1391–1396.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, Y. Q., Li, X. X., Li, X. J., Pan, H. & Wang, R. H. (2015). CrystEngComm, 17, 4883–4894.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, A. D., Hu, F. K., Ke, Z. C., Fang, C. & Wei, W. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 656–659.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H. T. & Li, Y. D. (2004). J. Mol. Struct. 690, 137–143.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, G. W., Wu, Y. P., Wang, H. B., Wang, Y. N., Li, D. S. & Liu, Y. L. (2015). CrystEngComm, 17, 9055–9061.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds