organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl 5-(4-hy­dr­oxy­phen­yl)-6-oxo-1,6-di­hydro­pyrazine-2-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, PO Box 344, Rabigh 21911, Saudi Arabia
*Correspondence e-mail: netaha@kau.edu.sa

Edited by H. Ishida, Okayama University, Japan (Received 10 October 2016; accepted 21 October 2016; online 8 November 2016)

The title compound, C12H10N2O4, is approximately planar, with dihedral angles of 5.53 (9) and 2.48 (13)°, respectively, between the benzene and pyrazine rings, and between the pyrazine ring and the methyl carboxyl­ate plane. An intra­molecular C—H⋯O hydrogen bond with an S(6) ring motif is observed. In the crystal, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link mol­ecules into a layer parallel to the ab plane. Adjacent layers inter­penetrate each other through a ππ inter­action [centroid–centroid distance of 3.4746 (11) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was obtained unexpectedly by the reaction of amoxicillin trihydrate and copper sulfate in a mixture of methanol and water. The mol­ecule is approximately planer, as indicated by dihedral angles 5.53 (9) and 2.48 (13)°, respectively, between the C1–C6 and C7/C8/N1/C9/C10/N2 rings, and between the C7/C8/N1/C9/C10/N2 ring and the O3/C11/O4/C12 plane. An intra­molecular C5—H5⋯O3 hydrogen bond generates an S(6) ring motif (Table 1[link] and Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O3i 0.88 (3) 1.92 (3) 2.770 (2) 164 (3)
N1—H1N1⋯O2ii 0.93 (2) 1.89 (2) 2.792 (2) 166 (2)
C5—H5⋯O2 0.93 2.15 2.816 (2) 127
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, shown with 50% probability displacement ellipsoids and the atom-numbering scheme. The intra­molecular hydrogen bond is shown as a dashed line.

In the crystal, mol­ecules are linked through inter­molecular O—H⋯O and N—H⋯O hydrogen bonds (Table 1[link]) into a layer parallel to the ab plane (Figs. 2[link] and 3[link]). Adjacent layers inter­penetrate each other and a ππ stacking inter­action is present between the layers. The CgCgiii separation is 3.4746 (11) Å [symmetry code: (iii) 1 − x, −y, 1 − z]; Cg is the centroid of the C7/C8/N1/C9/C10/N2 ring.

[Figure 2]
Figure 2
The crystal packing of the title compound viewed down the b axis. Hydrogen bonds are shown as dashed lines and H atoms not involved in the hydrogen bonds have been omitted.
[Figure 3]
Figure 3
The crystal packing of the title compound viewed down the c axis. Hydrogen bonds are shown as dashed lines and H atoms not involved in the hydrogen bonds have been omitted.

Synthesis and crystallization

Amoxicillin trihydrate (0.5 mmol, 0.21 g) was dissolved in methanol in a round-bottomed flask, then 0.1 g copper sulfate in 5 ml water were added. The mixture was refluxed for about 2 h. The product was filtered off. Single crystals suitable for X-ray diffraction were formed on slow evaporation of the solution in a few days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H10N2O4
Mr 246.22
Crystal system, space group Monoclinic, C2/c
Temperature (K) 273
a, b, c (Å) 23.9226 (19), 7.1372 (6), 13.0562 (11)
β (°) 99.158 (5)
V3) 2200.8 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.30 × 0.20 × 0.03
 
Data collection
Diffractometer Bruker D8 Quest
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.656, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 20352, 2011, 1450
Rint 0.075
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.07
No. of reflections 2011
No. of parameters 171
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.21
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2015).

Methyl 5-(4-hydroxyphenyl)-6-oxo-1,6-dihydropyrazine-2-carboxylate top
Crystal data top
C12H10N2O4F(000) = 1024
Mr = 246.22Dx = 1.486 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.9226 (19) ÅCell parameters from 184 reflections
b = 7.1372 (6) Åθ = 3.2–18.6°
c = 13.0562 (11) ŵ = 0.11 mm1
β = 99.158 (5)°T = 273 K
V = 2200.8 (3) Å3Plate, colourless
Z = 80.30 × 0.20 × 0.03 mm
Data collection top
Bruker D8 Quest
diffractometer
1450 reflections with I > 2σ(I)
φ and ω scansRint = 0.075
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.4°, θmin = 3.0°
Tmin = 0.656, Tmax = 0.745h = 2828
20352 measured reflectionsk = 88
2011 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0528P)2 + 1.083P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2011 reflectionsΔρmax = 0.14 e Å3
171 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27612 (6)0.4678 (2)0.63884 (13)0.0586 (5)
H1O10.2492 (12)0.494 (4)0.587 (2)0.095 (10)*
O20.45124 (6)0.2748 (3)0.32435 (10)0.0591 (5)
O30.68297 (6)0.0924 (2)0.50218 (12)0.0608 (5)
O40.64150 (5)0.1191 (2)0.33671 (11)0.0534 (4)
N10.54260 (6)0.2092 (2)0.38434 (12)0.0364 (4)
H1N10.5495 (10)0.216 (3)0.3167 (18)0.066 (7)*
N20.52255 (6)0.2191 (2)0.58370 (12)0.0405 (4)
C10.42192 (8)0.3329 (3)0.64301 (14)0.0428 (5)
H10.45360.30930.69260.051*
C20.37228 (8)0.3858 (3)0.67471 (15)0.0467 (5)
H20.37090.39980.74510.056*
C30.32447 (8)0.4184 (3)0.60294 (15)0.0400 (5)
C40.32729 (8)0.3998 (3)0.49911 (15)0.0472 (5)
H40.29520.42150.45010.057*
C50.37741 (8)0.3490 (3)0.46728 (15)0.0442 (5)
H50.37870.33810.39670.053*
C60.42609 (7)0.3136 (2)0.53830 (13)0.0317 (4)
C70.48090 (7)0.2593 (2)0.50891 (13)0.0326 (4)
C80.48888 (7)0.2495 (3)0.39935 (14)0.0368 (5)
C90.58564 (7)0.1695 (3)0.46318 (14)0.0357 (5)
C100.57426 (8)0.1723 (3)0.56099 (15)0.0419 (5)
H100.60290.14100.61510.050*
C110.64207 (8)0.1228 (3)0.43776 (16)0.0407 (5)
C120.69404 (9)0.0771 (4)0.2991 (2)0.0649 (7)
H12A0.68770.07890.22470.097*
H12B0.72200.16930.32480.097*
H12C0.70720.04480.32310.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0377 (8)0.0876 (13)0.0530 (10)0.0142 (8)0.0146 (7)0.0015 (9)
O20.0356 (8)0.1114 (14)0.0297 (7)0.0175 (8)0.0036 (6)0.0044 (8)
O30.0334 (8)0.0799 (12)0.0665 (10)0.0118 (8)0.0006 (7)0.0050 (8)
O40.0345 (8)0.0720 (11)0.0562 (10)0.0112 (7)0.0151 (7)0.0034 (8)
N10.0289 (8)0.0481 (10)0.0333 (9)0.0019 (7)0.0078 (7)0.0035 (7)
N20.0326 (9)0.0521 (11)0.0349 (9)0.0047 (7)0.0002 (7)0.0006 (7)
C10.0336 (10)0.0590 (14)0.0343 (10)0.0054 (9)0.0011 (8)0.0002 (9)
C20.0409 (11)0.0674 (15)0.0321 (10)0.0045 (10)0.0071 (9)0.0022 (10)
C30.0317 (10)0.0442 (12)0.0463 (12)0.0018 (9)0.0125 (9)0.0003 (9)
C40.0310 (10)0.0667 (15)0.0421 (12)0.0078 (10)0.0006 (9)0.0020 (10)
C50.0369 (11)0.0627 (14)0.0328 (10)0.0082 (10)0.0047 (8)0.0002 (10)
C60.0305 (9)0.0327 (11)0.0316 (9)0.0010 (7)0.0041 (7)0.0001 (8)
C70.0313 (9)0.0324 (10)0.0334 (10)0.0004 (8)0.0037 (8)0.0015 (8)
C80.0289 (9)0.0475 (12)0.0341 (10)0.0023 (8)0.0051 (8)0.0032 (9)
C90.0272 (9)0.0343 (11)0.0443 (11)0.0004 (8)0.0020 (8)0.0022 (9)
C100.0279 (9)0.0544 (13)0.0413 (11)0.0070 (9)0.0013 (8)0.0020 (9)
C110.0314 (10)0.0378 (12)0.0528 (13)0.0014 (9)0.0069 (9)0.0033 (9)
C120.0405 (12)0.0851 (18)0.0751 (17)0.0107 (12)0.0273 (12)0.0004 (14)
Geometric parameters (Å, º) top
O1—C31.362 (2)C2—H20.9300
O1—H1O10.88 (3)C3—C41.375 (3)
O2—C81.234 (2)C4—C51.379 (3)
O3—C111.204 (2)C4—H40.9300
O4—C111.317 (2)C5—C61.391 (2)
O4—C121.451 (2)C5—H50.9300
N1—C81.361 (2)C6—C71.475 (2)
N1—C91.365 (2)C7—C81.475 (3)
N1—H1N10.92 (2)C9—C101.348 (3)
N2—C71.311 (2)C9—C111.479 (3)
N2—C101.359 (2)C10—H100.9300
C1—C21.371 (3)C12—H12A0.9600
C1—C61.393 (2)C12—H12B0.9600
C1—H10.9300C12—H12C0.9600
C2—C31.378 (3)
C3—O1—H1O1110.3 (19)C1—C6—C7119.11 (16)
C11—O4—C12118.10 (16)N2—C7—C8120.78 (16)
C8—N1—C9123.47 (16)N2—C7—C6117.73 (16)
C8—N1—H1N1116.3 (14)C8—C7—C6121.49 (15)
C9—N1—H1N1120.1 (14)O2—C8—N1120.22 (16)
C7—N2—C10120.11 (16)O2—C8—C7124.90 (16)
C2—C1—C6121.61 (17)N1—C8—C7114.88 (15)
C2—C1—H1119.2C10—C9—N1118.02 (16)
C6—C1—H1119.2C10—C9—C11123.04 (17)
C1—C2—C3120.41 (18)N1—C9—C11118.93 (17)
C1—C2—H2119.8C9—C10—N2122.58 (17)
C3—C2—H2119.8C9—C10—H10118.7
O1—C3—C4122.84 (17)N2—C10—H10118.7
O1—C3—C2117.92 (18)O3—C11—O4125.00 (18)
C4—C3—C2119.24 (17)O3—C11—C9123.59 (19)
C3—C4—C5120.30 (18)O4—C11—C9111.40 (16)
C3—C4—H4119.9O4—C12—H12A109.5
C5—C4—H4119.9O4—C12—H12B109.5
C4—C5—C6121.51 (18)H12A—C12—H12B109.5
C4—C5—H5119.2O4—C12—H12C109.5
C6—C5—H5119.2H12A—C12—H12C109.5
C5—C6—C1116.93 (17)H12B—C12—H12C109.5
C5—C6—C7123.96 (16)
C6—C1—C2—C31.1 (3)C9—N1—C8—C73.7 (3)
C1—C2—C3—O1179.0 (2)N2—C7—C8—O2175.80 (19)
C1—C2—C3—C40.9 (3)C6—C7—C8—O24.0 (3)
O1—C3—C4—C5179.8 (2)N2—C7—C8—N14.3 (3)
C2—C3—C4—C50.0 (3)C6—C7—C8—N1175.95 (16)
C3—C4—C5—C60.6 (3)C8—N1—C9—C100.7 (3)
C4—C5—C6—C10.3 (3)C8—N1—C9—C11178.39 (18)
C4—C5—C6—C7179.86 (19)N1—C9—C10—N22.3 (3)
C2—C1—C6—C50.5 (3)C11—C9—C10—N2178.66 (18)
C2—C1—C6—C7179.01 (19)C7—N2—C10—C91.7 (3)
C10—N2—C7—C81.7 (3)C12—O4—C11—O30.6 (3)
C10—N2—C7—C6178.52 (17)C12—O4—C11—C9179.36 (18)
C5—C6—C7—N2175.99 (19)C10—C9—C11—O33.7 (3)
C1—C6—C7—N24.5 (3)N1—C9—C11—O3177.29 (19)
C5—C6—C7—C83.8 (3)C10—C9—C11—O4176.33 (18)
C1—C6—C7—C8175.72 (18)N1—C9—C11—O42.7 (3)
C9—N1—C8—O2176.32 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O3i0.88 (3)1.92 (3)2.770 (2)164 (3)
N1—H1N1···O2ii0.93 (2)1.89 (2)2.792 (2)166 (2)
C5—H5···O20.932.152.816 (2)127
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID:E-9395-2011

Acknowledgements

The author acknowledges the XRD facility located at Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, Saudi Arabia.

References

First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds