organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Methyl­pyridinium 2-carb­oxy-6-nitrobenzoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College, Chennai 600 005, India, bDepartment of Physics, Aksheyaa College of Engineering, Kancheepuram 603 314, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: mohan66@hotmail.com, chakkaravarthi_2005@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 November 2016; accepted 9 November 2016; online 15 November 2016)

In the title mol­ecular salt, C6H8N+·C8H4NO6, the anion is deprotonated at the carb­oxy­lic acid group adjacent to the nitro group. In the crystal, the anions are linked into an [001] chain by O—H⋯O hydrogen bonds. The cations are linked to these chains by N—H⋯O hydrogen bonds and weak C—H⋯O contacts, generating a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our ongoing studies of mol­ecular salts (Sivakumar et al., 2016[Sivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, 1, x160817.]), we now report the synthesis and the crystal structure of the title compound (Fig. 1[link]). Its geometric parameters are comparable with those of reported structures (Li & Chai, 2007[Li, Z.-S. & Chai, J.-S. (2007). Acta Cryst. E63, o2857-o2859.])

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, with atom labelling and 30% probability displacement ellipsoids.

The anion is deprotonated at the central carb­oxy­lic acid group (C8/O3/O4), but not the other (C7/O5/O6), hence a 1:1 stoichiometry salt arises. The dihedral angles between the C1–C6 benzene ring and the C7/O5/O6, C8/O3/O4 and N1/O1/O2 substituents are 27.09 (11), 71.59 (10) and 68.44 (11)°, respectively.

In the crystal, the N2—H2A⋯O4 hydrogen bond and C13—H13⋯O6 contact generate an R22(10) ring-set motif (Table 1[link], Fig. 2[link]). The O6—H6⋯O3i hydrogen bond (Table 1[link]) links adjacent anions into an infinite chain along [001]. The crystal structure is consolidated by weak C—H⋯O contacts to form a three dimensional network (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4 0.86 (3) 1.87 (3) 2.699 (2) 160 (2)
O6—H6⋯O3i 0.84 (1) 1.65 (1) 2.484 (2) 170 (3)
C13—H13⋯O6 0.93 2.44 3.219 (3) 141
C2—H2⋯O4ii 0.93 2.36 3.171 (3) 145
C10—H10⋯O3iii 0.93 2.54 3.191 (3) 127
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x, -y, -z+1.
[Figure 2]
Figure 2
A partial view of the crystal packing showing ring-set motif.
[Figure 3]
Figure 3
The crystal packing of the title mol­ecular salt viewed along the a axis. Hydrogen bonds are shown as dashed lines and H atoms not involved in hydrogen bonds have been omitted for clarity.

Synthesis and crystallization

The title salt was synthesized from 4-methyl­pyridine (4.90 g) and 3-nitro­phthalic acid (5.28 g) in a 2:1 ratio. These reactants were dissolved in water and continuously stirred about 5 h and kept at 35°C using a constant temperature bath. After 20 days, crystals suitable for X-ray diffraction were harvested.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H4NO6·C6H8N
Mr 304.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 7.683 (5), 17.309 (6), 11.172 (5)
β (°) 109.260 (5)
V3) 1402.6 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.28 × 0.26 × 0.22
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.504, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 18131, 4295, 2572
Rint 0.054
(sin θ/λ)max−1) 0.719
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.153, 1.04
No. of reflections 4295
No. of parameters 208
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.58, −0.35
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2009).

4-Methylpyridinium 2-carboxy-6-nitrobenzoate top
Crystal data top
C6H8N+·C8H4NO6F(000) = 632
Mr = 304.26Dx = 1.441 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.683 (5) ÅCell parameters from 5621 reflections
b = 17.309 (6) Åθ = 2.3–31.0°
c = 11.172 (5) ŵ = 0.12 mm1
β = 109.260 (5)°T = 295 K
V = 1402.6 (12) Å3Block, colourless
Z = 40.28 × 0.26 × 0.22 mm
Data collection top
Bruker axs kappa apex2 CCD
diffractometer
2572 reflections with I > 2σ(I)
ω and φ scanRint = 0.054
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 30.8°, θmin = 2.3°
Tmin = 0.504, Tmax = 0.746h = 109
18131 measured reflectionsk = 2424
4295 independent reflectionsl = 1416
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.4448P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.153(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.58 e Å3
4295 reflectionsΔρmin = 0.35 e Å3
208 parametersExtinction correction: SHELXL-2016/4 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.015 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5227 (2)0.13436 (10)0.49500 (16)0.0344 (4)
C20.7063 (2)0.15506 (12)0.54221 (19)0.0455 (5)
H20.7920070.1329310.5101030.055*
C30.7598 (3)0.20898 (13)0.6376 (2)0.0515 (5)
H30.8831870.2232080.6709510.062*
C40.6323 (3)0.24217 (12)0.68415 (19)0.0455 (5)
H40.6700370.2783360.7491970.055*
C50.4471 (2)0.22170 (10)0.63407 (16)0.0333 (4)
C60.3892 (2)0.16713 (9)0.53821 (15)0.0292 (3)
C70.3055 (2)0.26237 (10)0.67731 (17)0.0380 (4)
C80.1850 (2)0.14998 (9)0.48115 (15)0.0307 (3)
C90.1140 (3)0.02111 (13)0.75650 (18)0.0462 (5)
H90.0576180.0383610.6738960.055*
C100.1235 (3)0.06817 (12)0.8561 (2)0.0490 (5)
H100.0727610.1174600.8411810.059*
C110.2077 (3)0.04341 (12)0.97884 (19)0.0474 (5)
C120.2786 (4)0.03076 (14)0.9961 (2)0.0599 (6)
H120.3359950.0495301.0776390.072*
C130.2645 (3)0.07629 (13)0.8942 (2)0.0594 (6)
H130.3104760.1264390.9064220.071*
C140.2237 (4)0.09521 (17)1.0893 (2)0.0760 (8)
H14A0.1101310.1227771.0746060.114*
H14B0.2490510.0646911.1649170.114*
H14C0.3222520.1313671.0993010.114*
N10.4690 (2)0.07633 (10)0.39439 (15)0.0455 (4)
N20.1856 (2)0.04959 (11)0.77753 (17)0.0471 (4)
O10.5633 (2)0.07038 (13)0.32559 (17)0.0863 (6)
O20.3329 (2)0.03729 (9)0.38272 (15)0.0610 (4)
O30.10343 (16)0.17716 (8)0.37237 (12)0.0429 (3)
O40.10975 (16)0.11345 (8)0.54551 (12)0.0433 (3)
O50.1921 (3)0.30446 (12)0.60735 (17)0.0875 (7)
O60.3113 (2)0.24557 (9)0.78951 (14)0.0574 (4)
H2A0.180 (3)0.0781 (15)0.713 (2)0.064 (7)*
H60.233 (3)0.2727 (16)0.808 (3)0.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0292 (8)0.0394 (9)0.0369 (9)0.0043 (7)0.0142 (7)0.0024 (7)
C20.0279 (8)0.0576 (12)0.0550 (11)0.0066 (8)0.0191 (8)0.0051 (10)
C30.0278 (8)0.0607 (13)0.0629 (13)0.0068 (8)0.0110 (9)0.0018 (11)
C40.0393 (10)0.0460 (11)0.0470 (11)0.0085 (8)0.0084 (8)0.0049 (9)
C50.0337 (8)0.0316 (8)0.0367 (9)0.0002 (6)0.0146 (7)0.0014 (7)
C60.0245 (7)0.0322 (8)0.0333 (8)0.0008 (6)0.0126 (6)0.0036 (7)
C70.0430 (10)0.0330 (9)0.0408 (10)0.0019 (7)0.0176 (8)0.0023 (8)
C80.0264 (7)0.0337 (8)0.0351 (9)0.0005 (6)0.0143 (6)0.0013 (7)
C90.0410 (10)0.0577 (13)0.0397 (10)0.0020 (9)0.0133 (8)0.0031 (9)
C100.0513 (11)0.0430 (11)0.0528 (12)0.0065 (9)0.0173 (9)0.0006 (9)
C110.0506 (11)0.0501 (12)0.0432 (11)0.0058 (9)0.0176 (9)0.0062 (9)
C120.0750 (15)0.0550 (13)0.0436 (12)0.0034 (11)0.0113 (11)0.0079 (10)
C130.0696 (14)0.0409 (11)0.0643 (15)0.0078 (10)0.0173 (11)0.0011 (10)
C140.0891 (19)0.0815 (18)0.0584 (14)0.0061 (15)0.0256 (13)0.0259 (13)
N10.0381 (8)0.0537 (10)0.0452 (9)0.0135 (7)0.0145 (7)0.0059 (8)
N20.0437 (9)0.0529 (10)0.0486 (10)0.0029 (8)0.0204 (8)0.0125 (9)
O10.0699 (11)0.1304 (18)0.0740 (12)0.0046 (11)0.0447 (9)0.0371 (11)
O20.0559 (9)0.0570 (9)0.0707 (10)0.0050 (7)0.0215 (8)0.0227 (8)
O30.0320 (6)0.0555 (8)0.0393 (7)0.0012 (5)0.0093 (5)0.0098 (6)
O40.0311 (6)0.0563 (8)0.0458 (7)0.0048 (5)0.0170 (5)0.0100 (6)
O50.1094 (15)0.0963 (14)0.0725 (11)0.0649 (12)0.0511 (11)0.0296 (10)
O60.0695 (10)0.0642 (10)0.0476 (8)0.0214 (8)0.0315 (7)0.0034 (7)
Geometric parameters (Å, º) top
C1—C21.380 (2)C9—C101.362 (3)
C1—C61.391 (2)C9—H90.9300
C1—N11.462 (2)C10—C111.377 (3)
C2—C31.373 (3)C10—H100.9300
C2—H20.9300C11—C121.383 (3)
C3—C41.377 (3)C11—C141.497 (3)
C3—H30.9300C12—C131.359 (3)
C4—C51.392 (3)C12—H120.9300
C4—H40.9300C13—N21.327 (3)
C5—C61.387 (2)C13—H130.9300
C5—C71.503 (2)C14—H14A0.9600
C6—C81.515 (2)C14—H14B0.9600
C7—O51.205 (2)C14—H14C0.9600
C7—O61.273 (2)N1—O21.216 (2)
C8—O41.2350 (19)N1—O11.222 (2)
C8—O31.260 (2)N2—H2A0.86 (3)
C9—N21.330 (3)O6—H60.842 (10)
C2—C1—C6122.63 (17)C10—C9—H9120.1
C2—C1—N1117.77 (15)C9—C10—C11120.56 (19)
C6—C1—N1119.59 (15)C9—C10—H10119.7
C3—C2—C1118.66 (16)C11—C10—H10119.7
C3—C2—H2120.7C10—C11—C12117.50 (19)
C1—C2—H2120.7C10—C11—C14121.2 (2)
C2—C3—C4120.55 (17)C12—C11—C14121.3 (2)
C2—C3—H3119.7C13—C12—C11120.2 (2)
C4—C3—H3119.7C13—C12—H12119.9
C3—C4—C5120.14 (18)C11—C12—H12119.9
C3—C4—H4119.9N2—C13—C12120.4 (2)
C5—C4—H4119.9N2—C13—H13119.8
C6—C5—C4120.57 (15)C12—C13—H13119.8
C6—C5—C7119.04 (15)C11—C14—H14A109.5
C4—C5—C7120.26 (16)C11—C14—H14B109.5
C5—C6—C1117.42 (15)H14A—C14—H14B109.5
C5—C6—C8118.83 (13)C11—C14—H14C109.5
C1—C6—C8123.64 (15)H14A—C14—H14C109.5
O5—C7—O6124.05 (17)H14B—C14—H14C109.5
O5—C7—C5121.33 (17)O2—N1—O1123.59 (18)
O6—C7—C5114.54 (16)O2—N1—C1118.63 (15)
O4—C8—O3124.97 (15)O1—N1—C1117.77 (18)
O4—C8—C6118.29 (14)C13—N2—C9121.48 (19)
O3—C8—C6116.68 (13)C13—N2—H2A120.1 (17)
N2—C9—C10119.90 (19)C9—N2—H2A118.4 (17)
N2—C9—H9120.1C7—O6—H6109 (2)
C6—C1—C2—C31.4 (3)C4—C5—C7—O671.7 (2)
N1—C1—C2—C3179.43 (17)C5—C6—C8—O472.1 (2)
C1—C2—C3—C40.6 (3)C1—C6—C8—O4111.72 (19)
C2—C3—C4—C50.5 (3)C5—C6—C8—O3105.15 (18)
C3—C4—C5—C60.9 (3)C1—C6—C8—O371.0 (2)
C3—C4—C5—C7175.09 (18)N2—C9—C10—C110.4 (3)
C4—C5—C6—C10.1 (2)C9—C10—C11—C121.0 (3)
C7—C5—C6—C1175.92 (15)C9—C10—C11—C14178.3 (2)
C4—C5—C6—C8176.47 (16)C10—C11—C12—C130.2 (3)
C7—C5—C6—C80.5 (2)C14—C11—C12—C13179.1 (2)
C2—C1—C6—C51.1 (3)C11—C12—C13—N21.1 (4)
N1—C1—C6—C5179.78 (15)C2—C1—N1—O2153.77 (18)
C2—C1—C6—C8175.13 (16)C6—C1—N1—O227.0 (2)
N1—C1—C6—C84.0 (2)C2—C1—N1—O126.9 (3)
C6—C5—C7—O564.6 (3)C6—C1—N1—O1152.23 (19)
C4—C5—C7—O5111.4 (2)C12—C13—N2—C91.8 (3)
C6—C5—C7—O6112.27 (19)C10—C9—N2—C131.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.86 (3)1.87 (3)2.699 (2)160 (2)
O6—H6···O3i0.84 (1)1.65 (1)2.484 (2)170 (3)
C13—H13···O60.932.443.219 (3)141
C2—H2···O4ii0.932.363.171 (3)145
C10—H10···O3iii0.932.543.191 (3)127
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y, z+1.
 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Z.-S. & Chai, J.-S. (2007). Acta Cryst. E63, o2857–o2859.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSivakumar, P., Sudhahar, S., Gunasekaran, B., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, 1, x160817.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds