metal-organic compounds
Ferrocenecarboxylic anhydride: a redetermination
aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz
The title molecule, [Fe2(C5H5)2(C12H8O3)], briefly reported previously [Zhang (2015). Private Communication (CCDC reference 1056736). CCDC, Cambridge, England], comprises two ferrocenyl units connected by an acid anhydride bridge. Both ferrocene units have near coplanar [dihedral angles between the ring planes = 2.84 (4) and 1.74 (13)°] and eclipsed [pseudo torsion angles = 6.3 (2) and 5.1 (2)°] cyclopentadienyl (Cp) rings. A twist through the anhydride linkage results in a dihedral angle of 73.81 (8)° between the two substituted Cp rings planes. An intramolecular C—H⋯O hydrogen bond is also found. In the crystal, C—H⋯O hydrogen bonds link the molecules into a three-dimensional network.
Keywords: crystal structure; ferrocene; acid anhydride; hydrogen bonds.
CCDC reference: 1515202
Structure description
The title compound is a common by-product in the synthesis of ferrocenoyl chloride from ferrocene carboxylic acid (Wang & Huang, 2000). Two ferrocene units [(C101–C105)Fe1(C106–C110)] (Fc1) and [(C201–C205)Fe2(C206–C210)] (Fc2) are bridged by an acid anhydride system, with an intramolecular C206—H206⋯O1 hydrogen bond influencing the molecular conformation, Fig. 1. The room-temperature structure of this molecule has been deposited with the Cambridge Structural Database, CSD, (Groom et al., 2016) but no details of the molecular or were provided (Zhang, 2015). The CSD gives four other examples of Cp carboxylic (Elschenbroich et al., 1997; Siebler et al., 2010; Micallef et al., 2011; Liu et al., 2015). The two Cp rings of each ferrocenyl group are almost eclipsed with mean C⋯Cg1a⋯Cg1b⋯C and C⋯Cg2a⋯Cg2b⋯C torsion angles of 6.3 (2) and 5.1 (2)° [Cg1a, Cg1b, Cg2a and Cg2b are the centroids of the C101–C105, C106–C110, C201–C205 and C206–C210 Cp rings respectively]. Within each ferrocenyl moiety the rings are close to coplanar, with angles between the Cp ring planes of 2.84 (4)° for Fc1 and 1.74 (13)° for Fc2. Although the two acyl carbonyls lie close to the planes of their respective Cp rings, there is a twist through the connecting O3 atom of the anhydride unit that results in a torsion angle of approximately 57.36° for O1—C1⋯C2—O2. Similar torsional geometry is observed in the ruthenium analogue IVOYOY (62.31°; Micallef et al., 2011), the 1′,2′-bis-substituted ferrocene system KAJBUU (57.04°; Siebler et al., 2010) and the vanadium compound NEWFIE (66.68°; Elschenbroich et al., 1997). In the bis-ferrocenophanone structure HOVYEY (Liu et al., 2015) where two ferrocene groups are constrained by two anhydride linkages, the two carbonyl groups are still inclined at an O—C⋯C—O torsion angle of 27.47° despite the fact that the bridged Cp rings are almost coplanar, suggesting the O—C⋯C—O torsion is a mechanism to relieve in the molecule.
In the crystal, C204—H204⋯O1 hydrogen bonds (Table 1) generate zigzag chains along the a axis, Fig. 2. The carbonyl oxygen atom O2 acts as a dual acceptor with C207—H207⋯O2 hydrogen bonds forming chains along the b axis Fig. 3, and C205—H205⋯O2-generated inversion dimers linking the two chain motifs in the third dimension with molecules stacked along the b axis in such a way that one ferrocene unit of each individual molecule lies approximately parallel to the b-axis direction while the other lies in the ac plane, Fig. 4.
Synthesis and crystallization
The title compound was obtained as a by-product in the synthesis of ferrocenoyl chloride from the reaction of ferrocene carboxylic acid with triphosgene and 4-dimethylaminopyridine (Wang & Huang, 2000). Orange block-shaped crystals were obtained from diffusion of a dichloromethane solution layered with petroleum ether.
Refinement
Crystal data, data collection and structure
details are summarized in Table 2.Structural data
CCDC reference: 1515202
https://doi.org/10.1107/S2414314616017697/hb4093sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616017697/hb4093Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).[Fe2(C5H5)2(C12H8O3)] | Dx = 1.667 Mg m−3 |
Mr = 442.06 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pbca | Cell parameters from 7707 reflections |
a = 14.8773 (2) Å | θ = 4.6–73.5° |
b = 12.2499 (2) Å | µ = 13.38 mm−1 |
c = 19.3288 (3) Å | T = 100 K |
V = 3522.59 (9) Å3 | Block, orange |
Z = 8 | 0.16 × 0.13 × 0.11 mm |
F(000) = 1808 |
Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer | 3468 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 3262 reflections with I > 2σ(I) |
Detector resolution: 5.1725 pixels mm-1 | Rint = 0.040 |
ω scans | θmax = 73.3°, θmin = 4.6° |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) | h = −17→18 |
Tmin = 0.267, Tmax = 0.456 | k = −14→8 |
13584 measured reflections | l = −20→23 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.089P)2 + 0.2107P] where P = (Fo2 + 2Fc2)/3 |
S = 0.84 | (Δ/σ)max = 0.001 |
3468 reflections | Δρmax = 0.31 e Å−3 |
244 parameters | Δρmin = −0.68 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.12604 (2) | 0.19991 (2) | 0.26009 (2) | 0.01531 (11) | |
Fe2 | 0.39445 (2) | 0.28549 (2) | 0.51371 (2) | 0.01595 (11) | |
O2 | 0.38674 (9) | 0.00699 (11) | 0.43945 (7) | 0.0246 (3) | |
O1 | 0.19839 (8) | 0.05176 (10) | 0.42555 (6) | 0.0226 (3) | |
C2 | 0.37846 (11) | 0.09637 (16) | 0.41529 (9) | 0.0188 (4) | |
C205 | 0.50220 (13) | 0.19334 (16) | 0.48270 (9) | 0.0204 (4) | |
H205 | 0.5261 | 0.1314 | 0.5059 | 0.024* | |
O3 | 0.31555 (8) | 0.11814 (10) | 0.36295 (6) | 0.0206 (3) | |
C107 | 0.06717 (12) | 0.32095 (15) | 0.31823 (10) | 0.0229 (4) | |
H107 | 0.0316 | 0.3117 | 0.3586 | 0.027* | |
C102 | 0.08858 (13) | 0.05045 (14) | 0.29736 (9) | 0.0210 (4) | |
H102 | 0.0477 | 0.0366 | 0.3341 | 0.025* | |
C202 | 0.41558 (13) | 0.30383 (14) | 0.41050 (9) | 0.0191 (4) | |
H202 | 0.3724 | 0.3276 | 0.3776 | 0.023* | |
C101 | 0.18384 (12) | 0.06756 (14) | 0.30387 (9) | 0.0179 (3) | |
C201 | 0.43179 (12) | 0.19276 (15) | 0.43170 (9) | 0.0184 (4) | |
C105 | 0.21968 (13) | 0.08585 (14) | 0.23576 (8) | 0.0202 (4) | |
H105 | 0.2808 | 0.0999 | 0.2245 | 0.024* | |
C210 | 0.34157 (13) | 0.21774 (16) | 0.60180 (10) | 0.0243 (4) | |
H210 | 0.3607 | 0.1521 | 0.6234 | 0.029* | |
C106 | 0.16221 (13) | 0.33524 (15) | 0.31630 (10) | 0.0236 (4) | |
H106 | 0.2013 | 0.3371 | 0.3552 | 0.028* | |
C204 | 0.52947 (13) | 0.30364 (16) | 0.49200 (10) | 0.0218 (4) | |
H204 | 0.5754 | 0.3283 | 0.5224 | 0.026* | |
C208 | 0.32878 (12) | 0.39904 (16) | 0.57213 (10) | 0.0259 (4) | |
H208 | 0.3380 | 0.4757 | 0.5705 | 0.031* | |
C103 | 0.06679 (14) | 0.05807 (15) | 0.22591 (10) | 0.0250 (4) | |
H103 | 0.0084 | 0.0504 | 0.2066 | 0.030* | |
C1 | 0.23007 (11) | 0.07514 (14) | 0.37007 (8) | 0.0178 (3) | |
C209 | 0.37555 (12) | 0.3243 (2) | 0.61544 (10) | 0.0258 (4) | |
H209 | 0.4214 | 0.3422 | 0.6477 | 0.031* | |
C104 | 0.14701 (15) | 0.07904 (14) | 0.18836 (9) | 0.0238 (4) | |
H104 | 0.1513 | 0.0872 | 0.1396 | 0.029* | |
C108 | 0.03498 (15) | 0.32293 (18) | 0.24893 (11) | 0.0292 (4) | |
H108 | −0.0259 | 0.3148 | 0.2350 | 0.035* | |
C206 | 0.27372 (13) | 0.22702 (17) | 0.55000 (10) | 0.0245 (4) | |
H206 | 0.2398 | 0.1686 | 0.5310 | 0.029* | |
C109 | 0.10961 (16) | 0.33925 (17) | 0.20395 (11) | 0.0314 (5) | |
H109 | 0.1073 | 0.3445 | 0.1549 | 0.038* | |
C110 | 0.18818 (16) | 0.34619 (15) | 0.24563 (11) | 0.0290 (4) | |
H110 | 0.2478 | 0.3564 | 0.2292 | 0.035* | |
C207 | 0.26578 (12) | 0.33924 (17) | 0.53162 (9) | 0.0245 (4) | |
H207 | 0.2257 | 0.3689 | 0.4983 | 0.029* | |
C203 | 0.47615 (12) | 0.37101 (15) | 0.44800 (9) | 0.0216 (4) | |
H203 | 0.4805 | 0.4482 | 0.4444 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.01694 (18) | 0.01469 (19) | 0.01431 (17) | 0.00019 (9) | −0.00108 (10) | 0.00082 (9) |
Fe2 | 0.01265 (17) | 0.02041 (18) | 0.01477 (17) | 0.00060 (9) | 0.00069 (10) | 0.00078 (9) |
O2 | 0.0259 (7) | 0.0202 (7) | 0.0279 (7) | 0.0041 (5) | −0.0058 (5) | −0.0001 (5) |
O1 | 0.0233 (6) | 0.0270 (6) | 0.0175 (6) | −0.0009 (5) | 0.0002 (5) | 0.0032 (5) |
C2 | 0.0168 (8) | 0.0242 (9) | 0.0156 (8) | 0.0040 (6) | −0.0003 (6) | −0.0007 (7) |
C205 | 0.0141 (8) | 0.0273 (9) | 0.0196 (9) | 0.0040 (7) | 0.0001 (7) | 0.0006 (7) |
O3 | 0.0179 (6) | 0.0256 (6) | 0.0183 (6) | −0.0024 (5) | −0.0030 (5) | 0.0034 (5) |
C107 | 0.0228 (9) | 0.0209 (8) | 0.0250 (9) | 0.0061 (7) | 0.0027 (7) | −0.0039 (7) |
C102 | 0.0228 (8) | 0.0173 (8) | 0.0228 (8) | −0.0032 (7) | −0.0034 (7) | 0.0037 (7) |
C202 | 0.0173 (8) | 0.0258 (9) | 0.0143 (8) | 0.0001 (7) | 0.0022 (7) | 0.0032 (6) |
C101 | 0.0203 (8) | 0.0157 (8) | 0.0177 (8) | 0.0009 (6) | −0.0011 (6) | 0.0000 (6) |
C201 | 0.0143 (8) | 0.0267 (9) | 0.0142 (8) | 0.0021 (7) | 0.0004 (7) | −0.0001 (6) |
C105 | 0.0227 (9) | 0.0181 (8) | 0.0199 (9) | 0.0042 (7) | 0.0007 (7) | −0.0012 (6) |
C210 | 0.0232 (10) | 0.0329 (10) | 0.0167 (8) | 0.0012 (7) | 0.0046 (7) | 0.0044 (7) |
C106 | 0.0273 (10) | 0.0168 (8) | 0.0266 (9) | −0.0019 (7) | −0.0004 (7) | −0.0060 (7) |
C204 | 0.0129 (8) | 0.0317 (10) | 0.0208 (9) | −0.0015 (7) | 0.0009 (7) | −0.0008 (7) |
C208 | 0.0231 (9) | 0.0276 (10) | 0.0269 (9) | 0.0046 (7) | 0.0076 (7) | −0.0054 (8) |
C103 | 0.0294 (10) | 0.0195 (9) | 0.0262 (9) | −0.0053 (7) | −0.0096 (8) | 0.0020 (7) |
C1 | 0.0164 (8) | 0.0168 (7) | 0.0204 (8) | 0.0030 (6) | −0.0009 (6) | 0.0011 (6) |
C209 | 0.0192 (9) | 0.0403 (11) | 0.0180 (9) | −0.0006 (8) | 0.0020 (7) | −0.0062 (8) |
C104 | 0.0363 (10) | 0.0175 (8) | 0.0175 (8) | 0.0009 (8) | −0.0036 (7) | −0.0035 (7) |
C108 | 0.0314 (11) | 0.0258 (9) | 0.0304 (9) | 0.0134 (9) | −0.0067 (8) | −0.0020 (8) |
C206 | 0.0168 (8) | 0.0350 (10) | 0.0216 (8) | −0.0047 (8) | 0.0050 (7) | −0.0013 (8) |
C109 | 0.0537 (13) | 0.0175 (10) | 0.0230 (9) | 0.0068 (9) | 0.0014 (9) | 0.0066 (8) |
C110 | 0.0376 (11) | 0.0170 (9) | 0.0324 (10) | −0.0059 (8) | 0.0119 (9) | −0.0026 (8) |
C207 | 0.0136 (8) | 0.0368 (10) | 0.0232 (8) | 0.0068 (8) | 0.0032 (7) | 0.0005 (8) |
C203 | 0.0196 (8) | 0.0251 (9) | 0.0200 (8) | −0.0034 (7) | 0.0036 (7) | 0.0030 (7) |
Fe1—C101 | 2.0210 (17) | C102—C101 | 1.438 (2) |
Fe1—C105 | 2.0283 (18) | C102—H102 | 0.9500 |
Fe1—C110 | 2.0355 (19) | C202—C203 | 1.419 (3) |
Fe1—C109 | 2.037 (2) | C202—C201 | 1.441 (2) |
Fe1—C108 | 2.038 (2) | C202—H202 | 0.9500 |
Fe1—C102 | 2.0449 (18) | C101—C105 | 1.438 (2) |
Fe1—C104 | 2.0523 (18) | C101—C1 | 1.456 (2) |
Fe1—C106 | 2.0538 (18) | C105—C104 | 1.420 (3) |
Fe1—C107 | 2.0563 (18) | C105—H105 | 0.9500 |
Fe1—C103 | 2.0573 (19) | C210—C209 | 1.424 (3) |
Fe2—C201 | 2.0277 (18) | C210—C206 | 1.426 (3) |
Fe2—C202 | 2.0320 (18) | C210—H210 | 0.9500 |
Fe2—C208 | 2.0407 (18) | C106—C110 | 1.426 (3) |
Fe2—C209 | 2.0423 (19) | C106—H106 | 0.9500 |
Fe2—C203 | 2.0465 (17) | C204—C203 | 1.426 (3) |
Fe2—C205 | 2.0501 (19) | C204—H204 | 0.9500 |
Fe2—C210 | 2.0510 (18) | C208—C209 | 1.422 (3) |
Fe2—C207 | 2.0538 (18) | C208—C207 | 1.424 (3) |
Fe2—C206 | 2.0570 (19) | C208—H208 | 0.9500 |
Fe2—C204 | 2.064 (2) | C103—C104 | 1.420 (3) |
O2—C2 | 1.197 (2) | C103—H103 | 0.9500 |
O1—C1 | 1.206 (2) | C209—H209 | 0.9500 |
C2—O3 | 1.404 (2) | C104—H104 | 0.9500 |
C2—C201 | 1.457 (3) | C108—C109 | 1.424 (3) |
C205—C204 | 1.422 (3) | C108—H108 | 0.9500 |
C205—C201 | 1.438 (2) | C206—C207 | 1.425 (3) |
C205—H205 | 0.9500 | C206—H206 | 0.9500 |
O3—C1 | 1.383 (2) | C109—C110 | 1.422 (3) |
C107—C108 | 1.423 (3) | C109—H109 | 0.9500 |
C107—C106 | 1.425 (3) | C110—H110 | 0.9500 |
C107—H107 | 0.9500 | C207—H207 | 0.9500 |
C102—C103 | 1.422 (3) | C203—H203 | 0.9500 |
C101—Fe1—C105 | 41.60 (7) | C103—C102—H102 | 126.3 |
C101—Fe1—C110 | 124.78 (8) | C101—C102—H102 | 126.3 |
C105—Fe1—C110 | 105.23 (8) | Fe1—C102—H102 | 126.7 |
C101—Fe1—C109 | 161.12 (8) | C203—C202—C201 | 107.21 (16) |
C105—Fe1—C109 | 122.41 (8) | C203—C202—Fe2 | 70.18 (10) |
C110—Fe1—C109 | 40.88 (9) | C201—C202—Fe2 | 69.04 (10) |
C101—Fe1—C108 | 156.99 (8) | C203—C202—H202 | 126.4 |
C105—Fe1—C108 | 160.30 (8) | C201—C202—H202 | 126.4 |
C110—Fe1—C108 | 68.68 (9) | Fe2—C202—H202 | 126.0 |
C109—Fe1—C108 | 40.92 (9) | C105—C101—C102 | 107.93 (15) |
C101—Fe1—C102 | 41.42 (7) | C105—C101—C1 | 128.30 (16) |
C105—Fe1—C102 | 69.64 (8) | C102—C101—C1 | 123.49 (15) |
C110—Fe1—C102 | 163.80 (8) | C105—C101—Fe1 | 69.47 (10) |
C109—Fe1—C102 | 154.83 (9) | C102—C101—Fe1 | 70.18 (10) |
C108—Fe1—C102 | 121.21 (9) | C1—C101—Fe1 | 121.20 (12) |
C101—Fe1—C104 | 68.87 (7) | C205—C201—C202 | 108.18 (16) |
C105—Fe1—C104 | 40.71 (7) | C205—C201—C2 | 123.34 (16) |
C110—Fe1—C104 | 118.25 (8) | C202—C201—C2 | 127.72 (16) |
C109—Fe1—C104 | 105.24 (8) | C205—C201—Fe2 | 70.18 (10) |
C108—Fe1—C104 | 124.27 (8) | C202—C201—Fe2 | 69.36 (10) |
C102—Fe1—C104 | 68.50 (8) | C2—C201—Fe2 | 118.35 (12) |
C101—Fe1—C106 | 108.33 (8) | C104—C105—C101 | 107.42 (16) |
C105—Fe1—C106 | 119.92 (7) | C104—C105—Fe1 | 70.55 (10) |
C110—Fe1—C106 | 40.81 (7) | C101—C105—Fe1 | 68.93 (10) |
C109—Fe1—C106 | 68.71 (9) | C104—C105—H105 | 126.3 |
C108—Fe1—C106 | 68.49 (8) | C101—C105—H105 | 126.3 |
C102—Fe1—C106 | 127.42 (8) | Fe1—C105—H105 | 125.8 |
C104—Fe1—C106 | 154.15 (8) | C209—C210—C206 | 107.95 (17) |
C101—Fe1—C107 | 122.06 (7) | C209—C210—Fe2 | 69.31 (11) |
C105—Fe1—C107 | 156.34 (7) | C206—C210—Fe2 | 69.91 (10) |
C110—Fe1—C107 | 68.51 (8) | C209—C210—H210 | 126.0 |
C109—Fe1—C107 | 68.65 (8) | C206—C210—H210 | 126.0 |
C108—Fe1—C107 | 40.67 (8) | Fe2—C210—H210 | 126.3 |
C102—Fe1—C107 | 109.69 (7) | C107—C106—C110 | 107.78 (17) |
C104—Fe1—C107 | 162.58 (8) | C107—C106—Fe1 | 69.80 (10) |
C106—Fe1—C107 | 40.58 (7) | C110—C106—Fe1 | 68.91 (10) |
C101—Fe1—C103 | 68.85 (7) | C107—C106—H106 | 126.1 |
C105—Fe1—C103 | 68.78 (7) | C110—C106—H106 | 126.1 |
C110—Fe1—C103 | 153.38 (8) | Fe1—C106—H106 | 126.7 |
C109—Fe1—C103 | 119.02 (8) | C205—C204—C203 | 108.41 (17) |
C108—Fe1—C103 | 107.80 (9) | C205—C204—Fe2 | 69.25 (11) |
C102—Fe1—C103 | 40.55 (7) | C203—C204—Fe2 | 69.04 (11) |
C104—Fe1—C103 | 40.44 (8) | C205—C204—H204 | 125.8 |
C106—Fe1—C103 | 164.54 (8) | C203—C204—H204 | 125.8 |
C107—Fe1—C103 | 127.01 (8) | Fe2—C204—H204 | 127.5 |
C201—Fe2—C202 | 41.59 (7) | C209—C208—C207 | 108.32 (18) |
C201—Fe2—C208 | 161.01 (8) | C209—C208—Fe2 | 69.67 (11) |
C202—Fe2—C208 | 122.82 (8) | C207—C208—Fe2 | 70.14 (10) |
C201—Fe2—C209 | 157.03 (8) | C209—C208—H208 | 125.8 |
C202—Fe2—C209 | 160.18 (9) | C207—C208—H208 | 125.8 |
C208—Fe2—C209 | 40.78 (8) | Fe2—C208—H208 | 125.9 |
C201—Fe2—C203 | 68.83 (7) | C104—C103—C102 | 108.46 (17) |
C202—Fe2—C203 | 40.73 (7) | C104—C103—Fe1 | 69.59 (10) |
C208—Fe2—C203 | 106.19 (8) | C102—C103—Fe1 | 69.25 (10) |
C209—Fe2—C203 | 124.07 (8) | C104—C103—H103 | 125.8 |
C201—Fe2—C205 | 41.30 (7) | C102—C103—H103 | 125.8 |
C202—Fe2—C205 | 69.69 (7) | Fe1—C103—H103 | 127.0 |
C208—Fe2—C205 | 155.70 (8) | O1—C1—O3 | 122.57 (15) |
C209—Fe2—C205 | 121.15 (8) | O1—C1—C101 | 125.59 (16) |
C203—Fe2—C205 | 68.66 (8) | O3—C1—C101 | 111.78 (14) |
C201—Fe2—C210 | 121.83 (8) | C208—C209—C210 | 107.90 (17) |
C202—Fe2—C210 | 156.79 (8) | C208—C209—Fe2 | 69.55 (11) |
C208—Fe2—C210 | 68.46 (8) | C210—C209—Fe2 | 69.97 (11) |
C209—Fe2—C210 | 40.72 (8) | C208—C209—H209 | 126.0 |
C203—Fe2—C210 | 161.84 (8) | C210—C209—H209 | 126.0 |
C205—Fe2—C210 | 108.65 (8) | Fe2—C209—H209 | 126.0 |
C201—Fe2—C207 | 124.52 (8) | C105—C104—C103 | 108.71 (16) |
C202—Fe2—C207 | 105.92 (8) | C105—C104—Fe1 | 68.74 (10) |
C208—Fe2—C207 | 40.71 (8) | C103—C104—Fe1 | 69.97 (11) |
C209—Fe2—C207 | 68.58 (7) | C105—C104—H104 | 125.6 |
C203—Fe2—C207 | 119.61 (8) | C103—C104—H104 | 125.6 |
C205—Fe2—C207 | 162.67 (8) | Fe1—C104—H104 | 127.2 |
C210—Fe2—C207 | 68.42 (8) | C107—C108—C109 | 108.34 (18) |
C201—Fe2—C206 | 108.10 (8) | C107—C108—Fe1 | 70.36 (11) |
C202—Fe2—C206 | 120.55 (8) | C109—C108—Fe1 | 69.52 (11) |
C208—Fe2—C206 | 68.32 (8) | C107—C108—H108 | 125.8 |
C209—Fe2—C206 | 68.44 (8) | C109—C108—H108 | 125.8 |
C203—Fe2—C206 | 155.30 (8) | Fe1—C108—H108 | 125.9 |
C205—Fe2—C206 | 126.21 (8) | C207—C206—C210 | 108.09 (17) |
C210—Fe2—C206 | 40.63 (8) | C207—C206—Fe2 | 69.60 (10) |
C207—Fe2—C206 | 40.56 (8) | C210—C206—Fe2 | 69.46 (11) |
C201—Fe2—C204 | 68.58 (7) | C207—C206—H206 | 126.0 |
C202—Fe2—C204 | 68.78 (7) | C210—C206—H206 | 126.0 |
C208—Fe2—C204 | 120.33 (8) | Fe2—C206—H206 | 126.6 |
C209—Fe2—C204 | 107.74 (7) | C110—C109—C108 | 107.65 (18) |
C203—Fe2—C204 | 40.60 (7) | C110—C109—Fe1 | 69.49 (11) |
C205—Fe2—C204 | 40.44 (7) | C108—C109—Fe1 | 69.56 (11) |
C210—Fe2—C204 | 125.85 (8) | C110—C109—H109 | 126.2 |
C207—Fe2—C204 | 155.07 (8) | C108—C109—H109 | 126.2 |
C206—Fe2—C204 | 163.06 (8) | Fe1—C109—H109 | 126.3 |
O2—C2—O3 | 121.58 (17) | C109—C110—C106 | 108.33 (18) |
O2—C2—C201 | 126.89 (16) | C109—C110—Fe1 | 69.63 (12) |
O3—C2—C201 | 111.46 (15) | C106—C110—Fe1 | 70.28 (11) |
C204—C205—C201 | 107.41 (16) | C109—C110—H110 | 125.8 |
C204—C205—Fe2 | 70.30 (11) | C106—C110—H110 | 125.8 |
C201—C205—Fe2 | 68.51 (10) | Fe1—C110—H110 | 125.8 |
C204—C205—H205 | 126.3 | C208—C207—C206 | 107.73 (16) |
C201—C205—H205 | 126.3 | C208—C207—Fe2 | 69.15 (10) |
Fe2—C205—H205 | 126.4 | C206—C207—Fe2 | 69.84 (10) |
C1—O3—C2 | 117.96 (13) | C208—C207—H207 | 126.1 |
C108—C107—C106 | 107.89 (17) | C206—C207—H207 | 126.1 |
C108—C107—Fe1 | 68.97 (11) | Fe2—C207—H207 | 126.4 |
C106—C107—Fe1 | 69.62 (10) | C202—C203—C204 | 108.79 (17) |
C108—C107—H107 | 126.1 | C202—C203—Fe2 | 69.09 (10) |
C106—C107—H107 | 126.1 | C204—C203—Fe2 | 70.36 (10) |
Fe1—C107—H107 | 126.9 | C202—C203—H203 | 125.6 |
C103—C102—C101 | 107.47 (16) | C204—C203—H203 | 125.6 |
C103—C102—Fe1 | 70.20 (10) | Fe2—C203—H203 | 126.5 |
C101—C102—Fe1 | 68.40 (9) | ||
O2—C2—O3—C1 | 44.3 (2) | C105—C101—C1—O3 | 8.2 (2) |
C201—C2—O3—C1 | −138.50 (15) | C102—C101—C1—O3 | −164.96 (15) |
C103—C102—C101—C105 | 0.1 (2) | Fe1—C101—C1—O3 | −79.25 (17) |
Fe1—C102—C101—C105 | −59.44 (12) | C207—C208—C209—C210 | 0.0 (2) |
C103—C102—C101—C1 | 174.50 (16) | Fe2—C208—C209—C210 | −59.69 (13) |
Fe1—C102—C101—C1 | 114.94 (16) | C207—C208—C209—Fe2 | 59.71 (12) |
C103—C102—C101—Fe1 | 59.56 (12) | C206—C210—C209—C208 | 0.0 (2) |
C204—C205—C201—C202 | −0.6 (2) | Fe2—C210—C209—C208 | 59.43 (13) |
Fe2—C205—C201—C202 | 59.16 (12) | C206—C210—C209—Fe2 | −59.45 (13) |
C204—C205—C201—C2 | −171.34 (17) | C101—C105—C104—C103 | 0.62 (19) |
Fe2—C205—C201—C2 | −111.54 (17) | Fe1—C105—C104—C103 | −58.68 (13) |
C204—C205—C201—Fe2 | −59.80 (13) | C101—C105—C104—Fe1 | 59.31 (11) |
C203—C202—C201—C205 | 0.4 (2) | C102—C103—C104—C105 | −0.6 (2) |
Fe2—C202—C201—C205 | −59.67 (12) | Fe1—C103—C104—C105 | 57.93 (12) |
C203—C202—C201—C2 | 170.58 (17) | C102—C103—C104—Fe1 | −58.49 (13) |
Fe2—C202—C201—C2 | 110.50 (18) | C106—C107—C108—C109 | −0.4 (2) |
C203—C202—C201—Fe2 | 60.09 (12) | Fe1—C107—C108—C109 | −59.36 (14) |
O2—C2—C201—C205 | −2.1 (3) | C106—C107—C108—Fe1 | 58.92 (12) |
O3—C2—C201—C205 | −179.04 (15) | C209—C210—C206—C207 | 0.0 (2) |
O2—C2—C201—C202 | −170.88 (18) | Fe2—C210—C206—C207 | −59.07 (12) |
O3—C2—C201—C202 | 12.2 (2) | C209—C210—C206—Fe2 | 59.07 (13) |
O2—C2—C201—Fe2 | −86.0 (2) | C107—C108—C109—C110 | 0.6 (2) |
O3—C2—C201—Fe2 | 97.05 (15) | Fe1—C108—C109—C110 | −59.28 (14) |
C102—C101—C105—C104 | −0.45 (19) | C107—C108—C109—Fe1 | 59.88 (14) |
C1—C101—C105—C104 | −174.49 (17) | C108—C109—C110—C106 | −0.5 (2) |
Fe1—C101—C105—C104 | −60.34 (12) | Fe1—C109—C110—C106 | −59.86 (14) |
C102—C101—C105—Fe1 | 59.89 (12) | C108—C109—C110—Fe1 | 59.32 (14) |
C1—C101—C105—Fe1 | −114.15 (18) | C107—C106—C110—C109 | 0.3 (2) |
C108—C107—C106—C110 | 0.1 (2) | Fe1—C106—C110—C109 | 59.46 (14) |
Fe1—C107—C106—C110 | 58.62 (13) | C107—C106—C110—Fe1 | −59.18 (13) |
C108—C107—C106—Fe1 | −58.52 (13) | C209—C208—C207—C206 | 0.0 (2) |
C201—C205—C204—C203 | 0.6 (2) | Fe2—C208—C207—C206 | 59.41 (12) |
Fe2—C205—C204—C203 | −58.05 (13) | C209—C208—C207—Fe2 | −59.42 (12) |
C201—C205—C204—Fe2 | 58.67 (13) | C210—C206—C207—C208 | 0.0 (2) |
C101—C102—C103—C104 | 0.3 (2) | Fe2—C206—C207—C208 | −58.97 (12) |
Fe1—C102—C103—C104 | 58.69 (13) | C210—C206—C207—Fe2 | 58.98 (13) |
C101—C102—C103—Fe1 | −58.43 (12) | C201—C202—C203—C204 | 0.0 (2) |
C2—O3—C1—O1 | 24.4 (2) | Fe2—C202—C203—C204 | 59.33 (13) |
C2—O3—C1—C101 | −158.36 (15) | C201—C202—C203—Fe2 | −59.36 (12) |
C105—C101—C1—O1 | −174.66 (17) | C205—C204—C203—C202 | −0.4 (2) |
C102—C101—C1—O1 | 12.1 (3) | Fe2—C204—C203—C202 | −58.55 (13) |
Fe1—C101—C1—O1 | 97.86 (19) | C205—C204—C203—Fe2 | 58.18 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C206—H206···O1 | 0.95 | 2.57 | 3.413 (2) | 149 |
C205—H205···O2i | 0.95 | 2.38 | 3.319 (2) | 169 |
C204—H204···O1ii | 0.95 | 2.55 | 3.463 (2) | 160 |
C207—H207···O2iii | 0.95 | 2.64 | 3.542 (2) | 159 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1/2, −y+1/2, −z+1; (iii) −x+1/2, y+1/2, z. |
Acknowledgements
We thank the NZ Ministry of Business Innovation and Employment Science Investment Fund (grant No. UOO-X1206) for support of this work and the University of Otago for the purchase of the diffractometer.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Elschenbroich, C., Schiemann, O., Burghaus, O. & Harms, K. (1997). J. Am. Chem. Soc. 119, 7452–7457. CSD CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Liu, Y., Khalili Najafabadi, B., Azizpoor Fard, M. & Corrigan, J. F. (2015). Angew. Chem. Int. Ed. 54, 4832–4835. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Micallef, L. S., Loughrey, B. T., Healy, P. C., Parsons, P. G. & Williams, M. L. (2011). Organometallics, 30, 1395–1403. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siebler, D., Förster, C. & Heinze, K. (2010). Eur. J. Inorg. Chem. pp. 3986–3992. Web of Science CSD CrossRef Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Q. & Huang, R. (2000). J. Organomet. Chem. 604, 287–289. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, Y. (2015). Private Communication (CCDC reference 1056736). CCDC, Cambridge, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.