metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ferrocene­carb­­oxy­lic anhydride: a redetermination

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 November 2016; accepted 5 November 2016; online 10 November 2016)

The title mol­ecule, [Fe2(C5H5)2(C12H8O3)], briefly reported previously [Zhang (2015[Zhang, Y. (2015). Private Communication (CCDC reference 1056736). CCDC, Cambridge, England.]). Private Communication (CCDC reference 1056736). CCDC, Cambridge, England], comprises two ferrocenyl units connected by an acid anhydride bridge. Both ferrocene units have near coplanar [dihedral angles between the ring planes = 2.84 (4) and 1.74 (13)°] and eclipsed [pseudo torsion angles = 6.3 (2) and 5.1 (2)°] cyclo­penta­dienyl (Cp) rings. A twist through the anhydride linkage results in a dihedral angle of 73.81 (8)° between the two substituted Cp rings planes. An intra­molecular C—H⋯O hydrogen bond is also found. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound is a common by-product in the synthesis of ferrocenoyl chloride from ferrocene carb­oxy­lic acid (Wang & Huang, 2000[Wang, Q. & Huang, R. (2000). J. Organomet. Chem. 604, 287-289.]). Two ferrocene units [(C101–C105)Fe1(C106–C110)] (Fc1) and [(C201–C205)Fe2(C206–C210)] (Fc2) are bridged by an acid anhydride system, with an intra­molecular C206—H206⋯O1 hydrogen bond influencing the mol­ecular conformation, Fig. 1[link]. The room-temperature structure of this mol­ecule has been deposited with the Cambridge Structural Database, CSD, (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) but no details of the mol­ecular or crystal structure were provided (Zhang, 2015[Zhang, Y. (2015). Private Communication (CCDC reference 1056736). CCDC, Cambridge, England.]). The CSD gives four other examples of Cp carb­oxy­lic anhydrides (Elschenbroich et al., 1997[Elschenbroich, C., Schiemann, O., Burghaus, O. & Harms, K. (1997). J. Am. Chem. Soc. 119, 7452-7457.]; Siebler et al., 2010[Siebler, D., Förster, C. & Heinze, K. (2010). Eur. J. Inorg. Chem. pp. 3986-3992.]; Micallef et al., 2011[Micallef, L. S., Loughrey, B. T., Healy, P. C., Parsons, P. G. & Williams, M. L. (2011). Organometallics, 30, 1395-1403.]; Liu et al., 2015[Liu, Y., Khalili Najafabadi, B., Azizpoor Fard, M. & Corrigan, J. F. (2015). Angew. Chem. Int. Ed. 54, 4832-4835.]). The two Cp rings of each ferrocenyl group are almost eclipsed with mean C⋯Cg1aCg1b⋯C and C⋯Cg2aCg2b⋯C torsion angles of 6.3 (2) and 5.1 (2)° [Cg1a, Cg1b, Cg2a and Cg2b are the centroids of the C101–C105, C106–C110, C201–C205 and C206–C210 Cp rings respectively]. Within each ferrocenyl moiety the rings are close to coplanar, with angles between the Cp ring planes of 2.84 (4)° for Fc1 and 1.74 (13)° for Fc2. Although the two acyl carbonyls lie close to the planes of their respective Cp rings, there is a twist through the connecting O3 atom of the anhydride unit that results in a torsion angle of approximately 57.36° for O1—C1⋯C2—O2. Similar torsional geometry is observed in the ruthenium analogue IVOYOY (62.31°; Micallef et al., 2011[Micallef, L. S., Loughrey, B. T., Healy, P. C., Parsons, P. G. & Williams, M. L. (2011). Organometallics, 30, 1395-1403.]), the 1′,2′-bis-substituted ferrocene system KAJBUU (57.04°; Siebler et al., 2010[Siebler, D., Förster, C. & Heinze, K. (2010). Eur. J. Inorg. Chem. pp. 3986-3992.]) and the vanadium compound NEWFIE (66.68°; Elschenbroich et al., 1997[Elschenbroich, C., Schiemann, O., Burghaus, O. & Harms, K. (1997). J. Am. Chem. Soc. 119, 7452-7457.]). In the bis-ferrocenophanone structure HOVYEY (Liu et al., 2015[Liu, Y., Khalili Najafabadi, B., Azizpoor Fard, M. & Corrigan, J. F. (2015). Angew. Chem. Int. Ed. 54, 4832-4835.]) where two ferrocene groups are constrained by two anhydride linkages, the two carbonyl groups are still inclined at an O—C⋯C—O torsion angle of 27.47° despite the fact that the bridged Cp rings are almost coplanar, suggesting the O—C⋯C—O torsion is a mechanism to relieve steric strain in the mol­ecule.

[Figure 1]
Figure 1
The structure of the title compound with ellipsoids drawn at the 50% probability level. The intra­molecular C—H⋯O hydrogen bond is shown as a dashed line.

In the crystal, C204—H204⋯O1 hydrogen bonds (Table 1[link]) generate zigzag chains along the a axis, Fig. 2[link]. The carbonyl oxygen atom O2 acts as a dual acceptor with C207—H207⋯O2 hydrogen bonds forming chains along the b axis Fig. 3[link], and C205—H205⋯O2-generated inversion dimers linking the two chain motifs in the third dimension with mol­ecules stacked along the b axis in such a way that one ferrocene unit of each individual mol­ecule lies approximately parallel to the b-axis direction while the other lies in the ac plane, Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C206—H206⋯O1 0.95 2.57 3.413 (2) 149
C205—H205⋯O2i 0.95 2.38 3.319 (2) 169
C204—H204⋯O1ii 0.95 2.55 3.463 (2) 160
C207—H207⋯O2iii 0.95 2.64 3.542 (2) 159
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Zigzag chains of mol­ecules of the title compound along the a axis.
[Figure 3]
Figure 3
Chains of mol­ecules of the title compound along the b axis.
[Figure 4]
Figure 4
Overall packing of the title compound viewed along the b-axis direction.

Synthesis and crystallization

The title compound was obtained as a by-product in the synthesis of ferrocenoyl chloride from the reaction of ferrocene carb­oxy­lic acid with triphosgene and 4-di­methyl­amino­pyridine (Wang & Huang, 2000[Wang, Q. & Huang, R. (2000). J. Organomet. Chem. 604, 287-289.]). Orange block-shaped crystals were obtained from diffusion of a di­chloro­methane solution layered with petroleum ether.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.[link]

Table 2
Experimental details

Crystal data
Chemical formula [Fe2(C5H5)2(C12H8O3)]
Mr 442.06
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 14.8773 (2), 12.2499 (2), 19.3288 (3)
V3) 3522.59 (9)
Z 8
Radiation type Cu Kα
μ (mm−1) 13.38
Crystal size (mm) 0.16 × 0.13 × 0.11
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.267, 0.456
No. of measured, independent and observed [I > 2σ(I)] reflections 13584, 3468, 3262
Rint 0.040
(sin θ/λ)max−1) 0.621
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.090, 0.84
No. of reflections 3468
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.68
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Ferrocenecarboxylic anhydride top
Crystal data top
[Fe2(C5H5)2(C12H8O3)]Dx = 1.667 Mg m3
Mr = 442.06Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 7707 reflections
a = 14.8773 (2) Åθ = 4.6–73.5°
b = 12.2499 (2) ŵ = 13.38 mm1
c = 19.3288 (3) ÅT = 100 K
V = 3522.59 (9) Å3Block, orange
Z = 80.16 × 0.13 × 0.11 mm
F(000) = 1808
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
3468 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3262 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1Rint = 0.040
ω scansθmax = 73.3°, θmin = 4.6°
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
h = 1718
Tmin = 0.267, Tmax = 0.456k = 148
13584 measured reflectionsl = 2023
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.089P)2 + 0.2107P]
where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max = 0.001
3468 reflectionsΔρmax = 0.31 e Å3
244 parametersΔρmin = 0.68 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.12604 (2)0.19991 (2)0.26009 (2)0.01531 (11)
Fe20.39445 (2)0.28549 (2)0.51371 (2)0.01595 (11)
O20.38674 (9)0.00699 (11)0.43945 (7)0.0246 (3)
O10.19839 (8)0.05176 (10)0.42555 (6)0.0226 (3)
C20.37846 (11)0.09637 (16)0.41529 (9)0.0188 (4)
C2050.50220 (13)0.19334 (16)0.48270 (9)0.0204 (4)
H2050.52610.13140.50590.024*
O30.31555 (8)0.11814 (10)0.36295 (6)0.0206 (3)
C1070.06717 (12)0.32095 (15)0.31823 (10)0.0229 (4)
H1070.03160.31170.35860.027*
C1020.08858 (13)0.05045 (14)0.29736 (9)0.0210 (4)
H1020.04770.03660.33410.025*
C2020.41558 (13)0.30383 (14)0.41050 (9)0.0191 (4)
H2020.37240.32760.37760.023*
C1010.18384 (12)0.06756 (14)0.30387 (9)0.0179 (3)
C2010.43179 (12)0.19276 (15)0.43170 (9)0.0184 (4)
C1050.21968 (13)0.08585 (14)0.23576 (8)0.0202 (4)
H1050.28080.09990.22450.024*
C2100.34157 (13)0.21774 (16)0.60180 (10)0.0243 (4)
H2100.36070.15210.62340.029*
C1060.16221 (13)0.33524 (15)0.31630 (10)0.0236 (4)
H1060.20130.33710.35520.028*
C2040.52947 (13)0.30364 (16)0.49200 (10)0.0218 (4)
H2040.57540.32830.52240.026*
C2080.32878 (12)0.39904 (16)0.57213 (10)0.0259 (4)
H2080.33800.47570.57050.031*
C1030.06679 (14)0.05807 (15)0.22591 (10)0.0250 (4)
H1030.00840.05040.20660.030*
C10.23007 (11)0.07514 (14)0.37007 (8)0.0178 (3)
C2090.37555 (12)0.3243 (2)0.61544 (10)0.0258 (4)
H2090.42140.34220.64770.031*
C1040.14701 (15)0.07904 (14)0.18836 (9)0.0238 (4)
H1040.15130.08720.13960.029*
C1080.03498 (15)0.32293 (18)0.24893 (11)0.0292 (4)
H1080.02590.31480.23500.035*
C2060.27372 (13)0.22702 (17)0.55000 (10)0.0245 (4)
H2060.23980.16860.53100.029*
C1090.10961 (16)0.33925 (17)0.20395 (11)0.0314 (5)
H1090.10730.34450.15490.038*
C1100.18818 (16)0.34619 (15)0.24563 (11)0.0290 (4)
H1100.24780.35640.22920.035*
C2070.26578 (12)0.33924 (17)0.53162 (9)0.0245 (4)
H2070.22570.36890.49830.029*
C2030.47615 (12)0.37101 (15)0.44800 (9)0.0216 (4)
H2030.48050.44820.44440.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01694 (18)0.01469 (19)0.01431 (17)0.00019 (9)0.00108 (10)0.00082 (9)
Fe20.01265 (17)0.02041 (18)0.01477 (17)0.00060 (9)0.00069 (10)0.00078 (9)
O20.0259 (7)0.0202 (7)0.0279 (7)0.0041 (5)0.0058 (5)0.0001 (5)
O10.0233 (6)0.0270 (6)0.0175 (6)0.0009 (5)0.0002 (5)0.0032 (5)
C20.0168 (8)0.0242 (9)0.0156 (8)0.0040 (6)0.0003 (6)0.0007 (7)
C2050.0141 (8)0.0273 (9)0.0196 (9)0.0040 (7)0.0001 (7)0.0006 (7)
O30.0179 (6)0.0256 (6)0.0183 (6)0.0024 (5)0.0030 (5)0.0034 (5)
C1070.0228 (9)0.0209 (8)0.0250 (9)0.0061 (7)0.0027 (7)0.0039 (7)
C1020.0228 (8)0.0173 (8)0.0228 (8)0.0032 (7)0.0034 (7)0.0037 (7)
C2020.0173 (8)0.0258 (9)0.0143 (8)0.0001 (7)0.0022 (7)0.0032 (6)
C1010.0203 (8)0.0157 (8)0.0177 (8)0.0009 (6)0.0011 (6)0.0000 (6)
C2010.0143 (8)0.0267 (9)0.0142 (8)0.0021 (7)0.0004 (7)0.0001 (6)
C1050.0227 (9)0.0181 (8)0.0199 (9)0.0042 (7)0.0007 (7)0.0012 (6)
C2100.0232 (10)0.0329 (10)0.0167 (8)0.0012 (7)0.0046 (7)0.0044 (7)
C1060.0273 (10)0.0168 (8)0.0266 (9)0.0019 (7)0.0004 (7)0.0060 (7)
C2040.0129 (8)0.0317 (10)0.0208 (9)0.0015 (7)0.0009 (7)0.0008 (7)
C2080.0231 (9)0.0276 (10)0.0269 (9)0.0046 (7)0.0076 (7)0.0054 (8)
C1030.0294 (10)0.0195 (9)0.0262 (9)0.0053 (7)0.0096 (8)0.0020 (7)
C10.0164 (8)0.0168 (7)0.0204 (8)0.0030 (6)0.0009 (6)0.0011 (6)
C2090.0192 (9)0.0403 (11)0.0180 (9)0.0006 (8)0.0020 (7)0.0062 (8)
C1040.0363 (10)0.0175 (8)0.0175 (8)0.0009 (8)0.0036 (7)0.0035 (7)
C1080.0314 (11)0.0258 (9)0.0304 (9)0.0134 (9)0.0067 (8)0.0020 (8)
C2060.0168 (8)0.0350 (10)0.0216 (8)0.0047 (8)0.0050 (7)0.0013 (8)
C1090.0537 (13)0.0175 (10)0.0230 (9)0.0068 (9)0.0014 (9)0.0066 (8)
C1100.0376 (11)0.0170 (9)0.0324 (10)0.0059 (8)0.0119 (9)0.0026 (8)
C2070.0136 (8)0.0368 (10)0.0232 (8)0.0068 (8)0.0032 (7)0.0005 (8)
C2030.0196 (8)0.0251 (9)0.0200 (8)0.0034 (7)0.0036 (7)0.0030 (7)
Geometric parameters (Å, º) top
Fe1—C1012.0210 (17)C102—C1011.438 (2)
Fe1—C1052.0283 (18)C102—H1020.9500
Fe1—C1102.0355 (19)C202—C2031.419 (3)
Fe1—C1092.037 (2)C202—C2011.441 (2)
Fe1—C1082.038 (2)C202—H2020.9500
Fe1—C1022.0449 (18)C101—C1051.438 (2)
Fe1—C1042.0523 (18)C101—C11.456 (2)
Fe1—C1062.0538 (18)C105—C1041.420 (3)
Fe1—C1072.0563 (18)C105—H1050.9500
Fe1—C1032.0573 (19)C210—C2091.424 (3)
Fe2—C2012.0277 (18)C210—C2061.426 (3)
Fe2—C2022.0320 (18)C210—H2100.9500
Fe2—C2082.0407 (18)C106—C1101.426 (3)
Fe2—C2092.0423 (19)C106—H1060.9500
Fe2—C2032.0465 (17)C204—C2031.426 (3)
Fe2—C2052.0501 (19)C204—H2040.9500
Fe2—C2102.0510 (18)C208—C2091.422 (3)
Fe2—C2072.0538 (18)C208—C2071.424 (3)
Fe2—C2062.0570 (19)C208—H2080.9500
Fe2—C2042.064 (2)C103—C1041.420 (3)
O2—C21.197 (2)C103—H1030.9500
O1—C11.206 (2)C209—H2090.9500
C2—O31.404 (2)C104—H1040.9500
C2—C2011.457 (3)C108—C1091.424 (3)
C205—C2041.422 (3)C108—H1080.9500
C205—C2011.438 (2)C206—C2071.425 (3)
C205—H2050.9500C206—H2060.9500
O3—C11.383 (2)C109—C1101.422 (3)
C107—C1081.423 (3)C109—H1090.9500
C107—C1061.425 (3)C110—H1100.9500
C107—H1070.9500C207—H2070.9500
C102—C1031.422 (3)C203—H2030.9500
C101—Fe1—C10541.60 (7)C103—C102—H102126.3
C101—Fe1—C110124.78 (8)C101—C102—H102126.3
C105—Fe1—C110105.23 (8)Fe1—C102—H102126.7
C101—Fe1—C109161.12 (8)C203—C202—C201107.21 (16)
C105—Fe1—C109122.41 (8)C203—C202—Fe270.18 (10)
C110—Fe1—C10940.88 (9)C201—C202—Fe269.04 (10)
C101—Fe1—C108156.99 (8)C203—C202—H202126.4
C105—Fe1—C108160.30 (8)C201—C202—H202126.4
C110—Fe1—C10868.68 (9)Fe2—C202—H202126.0
C109—Fe1—C10840.92 (9)C105—C101—C102107.93 (15)
C101—Fe1—C10241.42 (7)C105—C101—C1128.30 (16)
C105—Fe1—C10269.64 (8)C102—C101—C1123.49 (15)
C110—Fe1—C102163.80 (8)C105—C101—Fe169.47 (10)
C109—Fe1—C102154.83 (9)C102—C101—Fe170.18 (10)
C108—Fe1—C102121.21 (9)C1—C101—Fe1121.20 (12)
C101—Fe1—C10468.87 (7)C205—C201—C202108.18 (16)
C105—Fe1—C10440.71 (7)C205—C201—C2123.34 (16)
C110—Fe1—C104118.25 (8)C202—C201—C2127.72 (16)
C109—Fe1—C104105.24 (8)C205—C201—Fe270.18 (10)
C108—Fe1—C104124.27 (8)C202—C201—Fe269.36 (10)
C102—Fe1—C10468.50 (8)C2—C201—Fe2118.35 (12)
C101—Fe1—C106108.33 (8)C104—C105—C101107.42 (16)
C105—Fe1—C106119.92 (7)C104—C105—Fe170.55 (10)
C110—Fe1—C10640.81 (7)C101—C105—Fe168.93 (10)
C109—Fe1—C10668.71 (9)C104—C105—H105126.3
C108—Fe1—C10668.49 (8)C101—C105—H105126.3
C102—Fe1—C106127.42 (8)Fe1—C105—H105125.8
C104—Fe1—C106154.15 (8)C209—C210—C206107.95 (17)
C101—Fe1—C107122.06 (7)C209—C210—Fe269.31 (11)
C105—Fe1—C107156.34 (7)C206—C210—Fe269.91 (10)
C110—Fe1—C10768.51 (8)C209—C210—H210126.0
C109—Fe1—C10768.65 (8)C206—C210—H210126.0
C108—Fe1—C10740.67 (8)Fe2—C210—H210126.3
C102—Fe1—C107109.69 (7)C107—C106—C110107.78 (17)
C104—Fe1—C107162.58 (8)C107—C106—Fe169.80 (10)
C106—Fe1—C10740.58 (7)C110—C106—Fe168.91 (10)
C101—Fe1—C10368.85 (7)C107—C106—H106126.1
C105—Fe1—C10368.78 (7)C110—C106—H106126.1
C110—Fe1—C103153.38 (8)Fe1—C106—H106126.7
C109—Fe1—C103119.02 (8)C205—C204—C203108.41 (17)
C108—Fe1—C103107.80 (9)C205—C204—Fe269.25 (11)
C102—Fe1—C10340.55 (7)C203—C204—Fe269.04 (11)
C104—Fe1—C10340.44 (8)C205—C204—H204125.8
C106—Fe1—C103164.54 (8)C203—C204—H204125.8
C107—Fe1—C103127.01 (8)Fe2—C204—H204127.5
C201—Fe2—C20241.59 (7)C209—C208—C207108.32 (18)
C201—Fe2—C208161.01 (8)C209—C208—Fe269.67 (11)
C202—Fe2—C208122.82 (8)C207—C208—Fe270.14 (10)
C201—Fe2—C209157.03 (8)C209—C208—H208125.8
C202—Fe2—C209160.18 (9)C207—C208—H208125.8
C208—Fe2—C20940.78 (8)Fe2—C208—H208125.9
C201—Fe2—C20368.83 (7)C104—C103—C102108.46 (17)
C202—Fe2—C20340.73 (7)C104—C103—Fe169.59 (10)
C208—Fe2—C203106.19 (8)C102—C103—Fe169.25 (10)
C209—Fe2—C203124.07 (8)C104—C103—H103125.8
C201—Fe2—C20541.30 (7)C102—C103—H103125.8
C202—Fe2—C20569.69 (7)Fe1—C103—H103127.0
C208—Fe2—C205155.70 (8)O1—C1—O3122.57 (15)
C209—Fe2—C205121.15 (8)O1—C1—C101125.59 (16)
C203—Fe2—C20568.66 (8)O3—C1—C101111.78 (14)
C201—Fe2—C210121.83 (8)C208—C209—C210107.90 (17)
C202—Fe2—C210156.79 (8)C208—C209—Fe269.55 (11)
C208—Fe2—C21068.46 (8)C210—C209—Fe269.97 (11)
C209—Fe2—C21040.72 (8)C208—C209—H209126.0
C203—Fe2—C210161.84 (8)C210—C209—H209126.0
C205—Fe2—C210108.65 (8)Fe2—C209—H209126.0
C201—Fe2—C207124.52 (8)C105—C104—C103108.71 (16)
C202—Fe2—C207105.92 (8)C105—C104—Fe168.74 (10)
C208—Fe2—C20740.71 (8)C103—C104—Fe169.97 (11)
C209—Fe2—C20768.58 (7)C105—C104—H104125.6
C203—Fe2—C207119.61 (8)C103—C104—H104125.6
C205—Fe2—C207162.67 (8)Fe1—C104—H104127.2
C210—Fe2—C20768.42 (8)C107—C108—C109108.34 (18)
C201—Fe2—C206108.10 (8)C107—C108—Fe170.36 (11)
C202—Fe2—C206120.55 (8)C109—C108—Fe169.52 (11)
C208—Fe2—C20668.32 (8)C107—C108—H108125.8
C209—Fe2—C20668.44 (8)C109—C108—H108125.8
C203—Fe2—C206155.30 (8)Fe1—C108—H108125.9
C205—Fe2—C206126.21 (8)C207—C206—C210108.09 (17)
C210—Fe2—C20640.63 (8)C207—C206—Fe269.60 (10)
C207—Fe2—C20640.56 (8)C210—C206—Fe269.46 (11)
C201—Fe2—C20468.58 (7)C207—C206—H206126.0
C202—Fe2—C20468.78 (7)C210—C206—H206126.0
C208—Fe2—C204120.33 (8)Fe2—C206—H206126.6
C209—Fe2—C204107.74 (7)C110—C109—C108107.65 (18)
C203—Fe2—C20440.60 (7)C110—C109—Fe169.49 (11)
C205—Fe2—C20440.44 (7)C108—C109—Fe169.56 (11)
C210—Fe2—C204125.85 (8)C110—C109—H109126.2
C207—Fe2—C204155.07 (8)C108—C109—H109126.2
C206—Fe2—C204163.06 (8)Fe1—C109—H109126.3
O2—C2—O3121.58 (17)C109—C110—C106108.33 (18)
O2—C2—C201126.89 (16)C109—C110—Fe169.63 (12)
O3—C2—C201111.46 (15)C106—C110—Fe170.28 (11)
C204—C205—C201107.41 (16)C109—C110—H110125.8
C204—C205—Fe270.30 (11)C106—C110—H110125.8
C201—C205—Fe268.51 (10)Fe1—C110—H110125.8
C204—C205—H205126.3C208—C207—C206107.73 (16)
C201—C205—H205126.3C208—C207—Fe269.15 (10)
Fe2—C205—H205126.4C206—C207—Fe269.84 (10)
C1—O3—C2117.96 (13)C208—C207—H207126.1
C108—C107—C106107.89 (17)C206—C207—H207126.1
C108—C107—Fe168.97 (11)Fe2—C207—H207126.4
C106—C107—Fe169.62 (10)C202—C203—C204108.79 (17)
C108—C107—H107126.1C202—C203—Fe269.09 (10)
C106—C107—H107126.1C204—C203—Fe270.36 (10)
Fe1—C107—H107126.9C202—C203—H203125.6
C103—C102—C101107.47 (16)C204—C203—H203125.6
C103—C102—Fe170.20 (10)Fe2—C203—H203126.5
C101—C102—Fe168.40 (9)
O2—C2—O3—C144.3 (2)C105—C101—C1—O38.2 (2)
C201—C2—O3—C1138.50 (15)C102—C101—C1—O3164.96 (15)
C103—C102—C101—C1050.1 (2)Fe1—C101—C1—O379.25 (17)
Fe1—C102—C101—C10559.44 (12)C207—C208—C209—C2100.0 (2)
C103—C102—C101—C1174.50 (16)Fe2—C208—C209—C21059.69 (13)
Fe1—C102—C101—C1114.94 (16)C207—C208—C209—Fe259.71 (12)
C103—C102—C101—Fe159.56 (12)C206—C210—C209—C2080.0 (2)
C204—C205—C201—C2020.6 (2)Fe2—C210—C209—C20859.43 (13)
Fe2—C205—C201—C20259.16 (12)C206—C210—C209—Fe259.45 (13)
C204—C205—C201—C2171.34 (17)C101—C105—C104—C1030.62 (19)
Fe2—C205—C201—C2111.54 (17)Fe1—C105—C104—C10358.68 (13)
C204—C205—C201—Fe259.80 (13)C101—C105—C104—Fe159.31 (11)
C203—C202—C201—C2050.4 (2)C102—C103—C104—C1050.6 (2)
Fe2—C202—C201—C20559.67 (12)Fe1—C103—C104—C10557.93 (12)
C203—C202—C201—C2170.58 (17)C102—C103—C104—Fe158.49 (13)
Fe2—C202—C201—C2110.50 (18)C106—C107—C108—C1090.4 (2)
C203—C202—C201—Fe260.09 (12)Fe1—C107—C108—C10959.36 (14)
O2—C2—C201—C2052.1 (3)C106—C107—C108—Fe158.92 (12)
O3—C2—C201—C205179.04 (15)C209—C210—C206—C2070.0 (2)
O2—C2—C201—C202170.88 (18)Fe2—C210—C206—C20759.07 (12)
O3—C2—C201—C20212.2 (2)C209—C210—C206—Fe259.07 (13)
O2—C2—C201—Fe286.0 (2)C107—C108—C109—C1100.6 (2)
O3—C2—C201—Fe297.05 (15)Fe1—C108—C109—C11059.28 (14)
C102—C101—C105—C1040.45 (19)C107—C108—C109—Fe159.88 (14)
C1—C101—C105—C104174.49 (17)C108—C109—C110—C1060.5 (2)
Fe1—C101—C105—C10460.34 (12)Fe1—C109—C110—C10659.86 (14)
C102—C101—C105—Fe159.89 (12)C108—C109—C110—Fe159.32 (14)
C1—C101—C105—Fe1114.15 (18)C107—C106—C110—C1090.3 (2)
C108—C107—C106—C1100.1 (2)Fe1—C106—C110—C10959.46 (14)
Fe1—C107—C106—C11058.62 (13)C107—C106—C110—Fe159.18 (13)
C108—C107—C106—Fe158.52 (13)C209—C208—C207—C2060.0 (2)
C201—C205—C204—C2030.6 (2)Fe2—C208—C207—C20659.41 (12)
Fe2—C205—C204—C20358.05 (13)C209—C208—C207—Fe259.42 (12)
C201—C205—C204—Fe258.67 (13)C210—C206—C207—C2080.0 (2)
C101—C102—C103—C1040.3 (2)Fe2—C206—C207—C20858.97 (12)
Fe1—C102—C103—C10458.69 (13)C210—C206—C207—Fe258.98 (13)
C101—C102—C103—Fe158.43 (12)C201—C202—C203—C2040.0 (2)
C2—O3—C1—O124.4 (2)Fe2—C202—C203—C20459.33 (13)
C2—O3—C1—C101158.36 (15)C201—C202—C203—Fe259.36 (12)
C105—C101—C1—O1174.66 (17)C205—C204—C203—C2020.4 (2)
C102—C101—C1—O112.1 (3)Fe2—C204—C203—C20258.55 (13)
Fe1—C101—C1—O197.86 (19)C205—C204—C203—Fe258.18 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C206—H206···O10.952.573.413 (2)149
C205—H205···O2i0.952.383.319 (2)169
C204—H204···O1ii0.952.553.463 (2)160
C207—H207···O2iii0.952.643.542 (2)159
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

We thank the NZ Ministry of Business Innovation and Employment Science Investment Fund (grant No. UOO-X1206) for support of this work and the University of Otago for the purchase of the diffractometer.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationElschenbroich, C., Schiemann, O., Burghaus, O. & Harms, K. (1997). J. Am. Chem. Soc. 119, 7452–7457.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationLiu, Y., Khalili Najafabadi, B., Azizpoor Fard, M. & Corrigan, J. F. (2015). Angew. Chem. Int. Ed. 54, 4832–4835.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMicallef, L. S., Loughrey, B. T., Healy, P. C., Parsons, P. G. & Williams, M. L. (2011). Organometallics, 30, 1395–1403.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiebler, D., Förster, C. & Heinze, K. (2010). Eur. J. Inorg. Chem. pp. 3986–3992.  Web of Science CSD CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q. & Huang, R. (2000). J. Organomet. Chem. 604, 287–289.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y. (2015). Private Communication (CCDC reference 1056736). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds