organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 1-benzyl-2-(4-meth­­oxy­phen­yl)-1H-benzimid­azole-5-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, bPG Department of Chemistry, SDM College (Autonomous), Ujire, 574 240, India, cDepartment of Chemistry, Mangalore University, Mangaluru 574 199, India, dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and eDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: muneer@najah.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 October 2016; accepted 3 November 2016; online 8 November 2016)

The title benzimidazole derivative, C24H22N2O3, is T-shaped with the meth­oxy­phenyl and benzyl rings inclined to the imidazole ring system (r.m.s. deviation = 0.009 Å) by 46.73 (10) and 88.88 (15)°, respectively. The phenyl ring and meth­oxy­phenyl rings are inclined at an angle of 82.14 (16)°. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into [101] C(14) chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzimidazole ring systems occur in many marketed drugs such as candesartan and pimobendan. Benzimidazole-5-carboxyl­ates act as anti-HIV agents against hepatitis C virus infections (Zhao et al. 2015[Zhao, C., Wang, Y. & Ma, S. (2015). Eur. J. Med. Chem. 102, 188-214.]). As a part of our ongoing research on benzimidazoles (Saberi et al. 2009[Saberi, A., Manjunath, H. R., Naveen, S., Prasad, T. N. M., Rangappa, K. S., Sridhar, M. A. & Prasad, J. S. (2009). Mol. Cryst. Liq. Cryst. 515, 199-206.]), we report herein on the synthesis and crystal structure of the title compound.

The ORTEP of the mol­ecule is shown in Fig. 1[link]. The mol­ecule is T-shaped with the meth­oxy­phenyl (C8–C13) and the benzyl (C19–C24) rings inclined to the imidazole ring system N1/N2/C1–C7 by 46.73 (10) and 88.88 (15)°, respectively, indicating that the benzyl ring is nearly orthogonal to the imidazole ring system. The phenyl ring and the meth­oxy phenyl rings are inclined at an angle of 82.14 (16)°.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into [101] C(14) chains (Table 1[link]). The mol­ecules exhibit layered stacking when viewed along the b axis (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14C⋯O1i 0.96 2.59 3.498 (4) 157
Symmetry code: (i) x-1, y, z-1.
[Figure 2]
Figure 2
A view along the b axis of the title compound, showing layered stacking. The dotted lines represent hydrogen bonds.

Synthesis and crystallization

Sodium di­thio­nite (3.0 equiv) was added to a stirred solution of ethyl-4-(4-benzyl­amino)-3-nitro­benzoate (0.01 mol) and 4-meth­oxy­benzaldehyde (0.01 mol) in DMSO (20 ml). The reaction mixture was stirred at 90°C for 3 h. After the completion of reaction [monitored by TLC; hexa­ne:ethyl acetate (7: 3, v/v)], it was poured onto crushed ice. The solid that separated was filtered off, washed with water and dried. The product was recrystallized from di­methyl­formamide solution to yield colourless prisms; m.p.: 156–158°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H22N2O3
Mr 386.44
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 10.3178 (11), 10.6067 (11), 10.9071 (12)
α, β, γ (°) 112.306 (3), 104.249 (4), 101.904 (4)
V3) 1008.81 (19)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.68
Crystal size (mm) 0.28 × 0.25 × 0.22
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.832, 0.865
No. of measured, independent and observed [I > 2σ(I)] reflections 13401, 3314, 2905
Rint 0.043
(sin θ/λ)max−1) 0.585
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.204, 1.05
No. of reflections 3314
No. of parameters 264
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.35
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

Ethyl 1-benzyl-2-(4-methoxyphenyl)-1H-benzimidazole-5-carboxylate top
Crystal data top
C24H22N2O3Z = 2
Mr = 386.44F(000) = 408
Triclinic, P1Dx = 1.272 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 10.3178 (11) ÅCell parameters from 2905 reflections
b = 10.6067 (11) Åθ = 4.5–64.5°
c = 10.9071 (12) ŵ = 0.68 mm1
α = 112.306 (3)°T = 296 K
β = 104.249 (4)°Prism, colourless
γ = 101.904 (4)°0.28 × 0.25 × 0.22 mm
V = 1008.81 (19) Å3
Data collection top
Bruker X8 Proteum
diffractometer
3314 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2905 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.043
Detector resolution: 18.4 pixels mm-1θmax = 64.5°, θmin = 4.7°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1212
Tmin = 0.832, Tmax = 0.865l = 1212
13401 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1321P)2 + 0.249P]
where P = (Fo2 + 2Fc2)/3
3314 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

The hydrogen atoms were fixed geometrically (C—H= 0.93–0.96 Å) and allowed to ride on their parent atoms with Uiso(H) =1.5Ueq(C-methyl) and = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1345 (2)0.4707 (2)0.9490 (2)0.0819 (7)
O21.2422 (2)0.7026 (2)1.0151 (2)0.1004 (8)
O30.15440 (19)0.06462 (19)0.0631 (2)0.0761 (6)
N10.70029 (18)0.34906 (19)0.5025 (2)0.0541 (6)
N20.75013 (18)0.53336 (17)0.44821 (18)0.0479 (5)
C10.8274 (2)0.4539 (2)0.6035 (2)0.0478 (6)
C20.9192 (2)0.4567 (2)0.7220 (2)0.0523 (7)
C31.0411 (2)0.5752 (2)0.8052 (2)0.0537 (7)
C41.0716 (2)0.6898 (2)0.7699 (3)0.0612 (7)
C50.9822 (2)0.6887 (2)0.6530 (3)0.0593 (7)
C60.8595 (2)0.5695 (2)0.5706 (2)0.0475 (6)
C70.6583 (2)0.3990 (2)0.4119 (2)0.0489 (6)
C80.5275 (2)0.3191 (2)0.2854 (2)0.0515 (7)
C90.4973 (3)0.1723 (2)0.2028 (3)0.0652 (8)
C100.3729 (3)0.0916 (3)0.0883 (3)0.0710 (8)
C110.2729 (2)0.1544 (3)0.0531 (2)0.0589 (7)
C120.3010 (2)0.3007 (2)0.1350 (2)0.0581 (7)
C130.4272 (2)0.3818 (2)0.2499 (2)0.0559 (7)
C140.0398 (3)0.1163 (3)0.0935 (3)0.0814 (10)
C151.1414 (3)0.5745 (3)0.9281 (3)0.0622 (8)
C161.3552 (4)0.7102 (5)1.1320 (4)0.1037 (14)
C171.4595 (5)0.6764 (9)1.0836 (6)0.181 (3)
C180.7560 (2)0.6083 (2)0.3608 (2)0.0549 (7)
C190.7436 (2)0.7562 (2)0.4225 (2)0.0496 (6)
C200.6656 (3)0.7919 (3)0.5065 (3)0.0737 (10)
C210.6474 (5)0.9258 (3)0.5525 (4)0.1012 (15)
C220.7078 (4)1.0245 (3)0.5153 (5)0.1011 (15)
C230.7836 (4)0.9912 (4)0.4318 (6)0.121 (2)
C240.8041 (4)0.8571 (4)0.3853 (4)0.0938 (14)
H20.899100.380600.744800.0630*
H41.154600.768300.827400.0730*
H51.003000.764600.630000.0710*
H90.562300.128100.225300.0780*
H100.355200.006300.033700.0850*
H120.235300.344300.112900.0700*
H130.445200.479800.304300.0670*
H14A0.005600.140700.016200.1220*
H14B0.035400.042500.178900.1220*
H14C0.071800.200600.106200.1220*
H16A1.393000.806901.210600.1240*
H16B1.318100.642701.165100.1240*
H17A1.424200.576901.013500.2710*
H17B1.539200.691101.161300.2710*
H17C1.488600.737201.042000.2710*
H18A0.680000.549400.269300.0660*
H18B0.845100.617000.344700.0660*
H200.623800.725300.533400.0880*
H210.593300.947900.609400.1210*
H220.696701.114900.547500.1220*
H230.823201.058200.404300.1450*
H240.858900.836300.329000.1120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0830 (12)0.0793 (13)0.0802 (12)0.0231 (10)0.0081 (10)0.0481 (11)
O20.0881 (14)0.0772 (13)0.0923 (14)0.0109 (11)0.0177 (11)0.0349 (12)
O30.0630 (10)0.0582 (10)0.0732 (11)0.0116 (8)0.0016 (8)0.0147 (9)
N10.0513 (10)0.0429 (9)0.0650 (11)0.0133 (8)0.0130 (8)0.0274 (8)
N20.0523 (9)0.0384 (9)0.0529 (10)0.0154 (7)0.0155 (8)0.0226 (7)
C10.0482 (10)0.0389 (10)0.0580 (12)0.0179 (8)0.0192 (9)0.0218 (9)
C20.0554 (11)0.0470 (11)0.0629 (12)0.0224 (9)0.0225 (10)0.0298 (10)
C30.0544 (12)0.0482 (12)0.0581 (12)0.0224 (10)0.0182 (10)0.0223 (10)
C40.0538 (12)0.0457 (12)0.0701 (14)0.0097 (9)0.0103 (10)0.0232 (11)
C50.0604 (12)0.0443 (12)0.0683 (14)0.0110 (10)0.0162 (11)0.0283 (11)
C60.0505 (11)0.0395 (10)0.0539 (11)0.0176 (8)0.0182 (9)0.0215 (9)
C70.0516 (11)0.0397 (10)0.0569 (12)0.0188 (9)0.0189 (9)0.0220 (9)
C80.0533 (11)0.0433 (11)0.0578 (12)0.0169 (9)0.0183 (9)0.0236 (10)
C90.0602 (13)0.0473 (13)0.0771 (15)0.0215 (10)0.0130 (12)0.0228 (12)
C100.0675 (14)0.0408 (12)0.0777 (16)0.0147 (11)0.0082 (12)0.0129 (11)
C110.0571 (12)0.0510 (12)0.0569 (12)0.0114 (10)0.0144 (10)0.0200 (10)
C120.0576 (12)0.0534 (13)0.0616 (13)0.0227 (10)0.0166 (10)0.0251 (11)
C130.0592 (12)0.0434 (11)0.0572 (12)0.0185 (10)0.0148 (10)0.0180 (10)
C140.0644 (15)0.0829 (19)0.0781 (17)0.0157 (13)0.0071 (13)0.0339 (15)
C150.0599 (13)0.0604 (14)0.0596 (13)0.0218 (11)0.0144 (11)0.0242 (12)
C160.085 (2)0.110 (3)0.092 (2)0.0154 (19)0.0024 (18)0.052 (2)
C170.101 (3)0.354 (9)0.128 (4)0.081 (4)0.035 (3)0.151 (5)
C180.0626 (12)0.0553 (13)0.0558 (12)0.0217 (10)0.0252 (10)0.0307 (10)
C190.0471 (10)0.0444 (11)0.0572 (12)0.0109 (8)0.0123 (9)0.0293 (10)
C200.103 (2)0.0551 (14)0.0897 (18)0.0356 (14)0.0527 (16)0.0433 (13)
C210.149 (3)0.0676 (18)0.122 (3)0.061 (2)0.073 (2)0.0500 (19)
C220.112 (3)0.0550 (17)0.140 (3)0.0331 (17)0.038 (2)0.0497 (19)
C230.118 (3)0.079 (2)0.205 (5)0.026 (2)0.066 (3)0.103 (3)
C240.096 (2)0.083 (2)0.143 (3)0.0294 (16)0.067 (2)0.077 (2)
Geometric parameters (Å, º) top
O1—C151.198 (4)C19—C241.371 (5)
O2—C151.334 (4)C20—C211.386 (5)
O2—C161.464 (5)C21—C221.352 (6)
O3—C111.360 (3)C22—C231.337 (7)
O3—C141.422 (4)C23—C241.398 (7)
N1—C11.388 (3)C2—H20.9300
N1—C71.314 (3)C4—H40.9300
N2—C61.376 (3)C5—H50.9300
N2—C71.384 (3)C9—H90.9300
N2—C181.459 (3)C10—H100.9300
C1—C21.388 (3)C12—H120.9300
C1—C61.402 (3)C13—H130.9300
C2—C31.380 (3)C14—H14A0.9600
C3—C41.408 (3)C14—H14B0.9600
C3—C151.482 (4)C14—H14C0.9600
C4—C51.372 (4)C16—H16A0.9700
C5—C61.388 (3)C16—H16B0.9700
C7—C81.472 (3)C17—H17A0.9600
C8—C91.389 (3)C17—H17B0.9600
C8—C131.395 (3)C17—H17C0.9600
C9—C101.373 (4)C18—H18A0.9700
C10—C111.392 (4)C18—H18B0.9700
C11—C121.387 (4)C20—H200.9300
C12—C131.387 (3)C21—H210.9300
C16—C171.364 (7)C22—H220.9300
C18—C191.501 (3)C23—H230.9300
C19—C201.362 (4)C24—H240.9300
C15—O2—C16117.5 (3)C3—C2—H2121.00
C11—O3—C14118.6 (2)C3—C4—H4119.00
C1—N1—C7105.3 (2)C5—C4—H4119.00
C6—N2—C7106.36 (18)C4—C5—H5121.00
C6—N2—C18123.52 (19)C6—C5—H5121.00
C7—N2—C18128.33 (17)C8—C9—H9120.00
N1—C1—C2130.1 (2)C10—C9—H9120.00
N1—C1—C6109.81 (18)C9—C10—H10120.00
C2—C1—C6120.1 (2)C11—C10—H10120.00
C1—C2—C3118.4 (2)C11—C12—H12120.00
C2—C3—C4120.7 (2)C13—C12—H12120.00
C2—C3—C15118.0 (2)C8—C13—H13119.00
C4—C3—C15121.3 (2)C12—C13—H13119.00
C3—C4—C5121.8 (2)O3—C14—H14A110.00
C4—C5—C6117.1 (2)O3—C14—H14B109.00
N2—C6—C1105.79 (18)O3—C14—H14C109.00
N2—C6—C5132.2 (2)H14A—C14—H14B109.00
C1—C6—C5122.1 (2)H14A—C14—H14C109.00
N1—C7—N2112.80 (18)H14B—C14—H14C109.00
N1—C7—C8123.1 (2)O2—C16—H16A110.00
N2—C7—C8124.14 (19)O2—C16—H16B110.00
C7—C8—C9118.8 (2)C17—C16—H16A110.00
C7—C8—C13122.90 (19)C17—C16—H16B110.00
C9—C8—C13118.2 (2)H16A—C16—H16B108.00
C8—C9—C10120.9 (3)C16—C17—H17A109.00
C9—C10—C11120.9 (3)C16—C17—H17B109.00
O3—C11—C10115.8 (3)C16—C17—H17C110.00
O3—C11—C12125.2 (2)H17A—C17—H17B109.00
C10—C11—C12119.0 (2)H17A—C17—H17C110.00
C11—C12—C13119.9 (2)H17B—C17—H17C109.00
C8—C13—C12121.2 (2)N2—C18—H18A109.00
O1—C15—O2122.6 (3)N2—C18—H18B109.00
O1—C15—C3124.3 (3)C19—C18—H18A108.00
O2—C15—C3113.1 (3)C19—C18—H18B109.00
O2—C16—C17108.2 (4)H18A—C18—H18B108.00
N2—C18—C19114.94 (17)C19—C20—H20119.00
C18—C19—C20122.7 (2)C21—C20—H20119.00
C18—C19—C24119.2 (2)C20—C21—H21120.00
C20—C19—C24118.0 (3)C22—C21—H21120.00
C19—C20—C21121.1 (3)C21—C22—H22120.00
C20—C21—C22120.4 (4)C23—C22—H22120.00
C21—C22—C23119.5 (4)C22—C23—H23119.00
C22—C23—C24120.9 (4)C24—C23—H23120.00
C19—C24—C23120.1 (4)C19—C24—H24120.00
C1—C2—H2121.00C23—C24—H24120.00
C16—O2—C15—O16.0 (4)C2—C3—C15—O2169.0 (2)
C16—O2—C15—C3173.9 (3)C4—C3—C15—O1166.1 (3)
C15—O2—C16—C1787.3 (6)C4—C3—C15—O213.8 (4)
C14—O3—C11—C10171.4 (3)C3—C4—C5—C60.2 (4)
C14—O3—C11—C129.7 (4)C4—C5—C6—N2179.1 (2)
C7—N1—C1—C2178.7 (2)C4—C5—C6—C10.5 (3)
C7—N1—C1—C60.5 (2)N1—C7—C8—C944.3 (3)
C1—N1—C7—N20.8 (2)N1—C7—C8—C13131.1 (2)
C1—N1—C7—C8178.96 (19)N2—C7—C8—C9135.4 (2)
C7—N2—C6—C10.5 (2)N2—C7—C8—C1349.2 (3)
C7—N2—C6—C5178.4 (2)C7—C8—C9—C10176.4 (2)
C18—N2—C6—C1166.32 (19)C13—C8—C9—C100.8 (4)
C18—N2—C6—C512.5 (4)C7—C8—C13—C12175.8 (2)
C6—N2—C7—N10.8 (2)C9—C8—C13—C120.4 (3)
C6—N2—C7—C8179.0 (2)C8—C9—C10—C110.9 (4)
C18—N2—C7—N1165.8 (2)C9—C10—C11—O3179.4 (3)
C18—N2—C7—C814.0 (3)C9—C10—C11—C120.5 (4)
C6—N2—C18—C1973.5 (3)O3—C11—C12—C13178.8 (2)
C7—N2—C18—C19123.9 (2)C10—C11—C12—C130.0 (4)
N1—C1—C2—C3179.3 (2)C11—C12—C13—C80.0 (3)
C6—C1—C2—C30.1 (3)N2—C18—C19—C2031.9 (3)
N1—C1—C6—N20.0 (2)N2—C18—C19—C24153.0 (3)
N1—C1—C6—C5179.0 (2)C18—C19—C20—C21174.9 (3)
C2—C1—C6—N2179.32 (19)C24—C19—C20—C210.3 (4)
C2—C1—C6—C50.3 (3)C18—C19—C24—C23174.5 (3)
C1—C2—C3—C40.4 (3)C20—C19—C24—C230.8 (5)
C1—C2—C3—C15177.5 (2)C19—C20—C21—C220.4 (6)
C2—C3—C4—C50.2 (4)C20—C21—C22—C231.0 (7)
C15—C3—C4—C5177.3 (2)C21—C22—C23—C241.6 (7)
C2—C3—C15—O111.0 (4)C22—C23—C24—C191.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14C···O1i0.962.593.498 (4)157
Symmetry code: (i) x1, y, z1.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSaberi, A., Manjunath, H. R., Naveen, S., Prasad, T. N. M., Rangappa, K. S., Sridhar, M. A. & Prasad, J. S. (2009). Mol. Cryst. Liq. Cryst. 515, 199–206.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, C., Wang, Y. & Ma, S. (2015). Eur. J. Med. Chem. 102, 188–214.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds