organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl 5-(4-hy­dr­oxy­phen­yl)-6-oxo-1,6-di­hydro­pyrazine-2-carboxyl­ate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Rabigh College of Science and Arts, King Abdulaziz, University, PO Box 344, Rabigh 21911, Saudi Arabia
*Correspondence e-mail: netaha@kau.edu.sa,nasertaha90@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 October 2016; accepted 29 October 2016; online 15 November 2016)

In the title hydrate, C12H10N2O4·H2O, the dihedral angle between the benzene and pyrazine rings is 37.70 (10)°. In the crystal, mol­ecules are connected by hydrogen bonds (N—H⋯O, O—H⋯O and O—H⋯O) to generate (1-10) sheets. Aromatic ππ stacking [centroid–centroid separation = 3.7070 (13) Å] links the sheets into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our ongoing studies of amoxicillin degradation (Eltayeb, 2016[Eltayeb, N. E. (2016). IUCrData, 1, x161689.]), we report herein the synthesis and crystal structure of the title compound (Fig. 1[link]). The dihedral angle between the benzene and pyrazine rings is 37.70 (10)°. In the crystal, the mol­ecules are connected by various hydrogen bonds (N1—H1N⋯O2, O1—H1O⋯O1W, O1W—H1W⋯O4 and O1W—H2W⋯N2 (Fig. 2[link], Table 1[link]), which generate (1[\overline{1}]0) sheets.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.94 (3) 1.88 (3) 2.805 (2) 172 (3)
O1—H1O⋯O1W 0.93 (3) 1.77 (3) 2.682 (3) 168 (3)
O1W—H1W⋯O4ii 0.86 (4) 2.02 (4) 2.864 (2) 167 (3)
O1W—H2W⋯N2iii 0.90 (3) 1.97 (3) 2.838 (3) 163 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z-1; (iii) -x+1, -y+2, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, shown with 50% probability displacement ellipsoids. The O—H⋯O hydrogen bond is indicated by a dashed line.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Aromatic ππ stacking is also observed: Cg1Cg1iv [centroid–centroid separation = 3.7074 (13) Å] and Cg2⋯Cg2v [centroid–centroid separation = 3.7071 (13)] [symmetry codes: (iv) −1 + x, y, x; (v) 1 + x, y, z; Cg1 is the centroid of the C7/C8/N1/C9/C10/N2 ring and Cg2 is the centroid of the C1–C6 ring]. The end result is a three-dimensional network.

Synthesis and crystallization

Amoxicillin trihydrate (0.5 mmol, 0.21 g) and 2,4-di­hydroxy­benzaldehyde (0.5 mmol, 0.07 g) were dissolved in methanol in a round-bottomed flask, then 0.1 g copper sulfate solution in 5 ml water was added. The mixture was refluxed for about 2 h. The product was filtered. Golden blocks of the title compound were formed on slow evaporation of the solution in a few days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The highest residual electron density peak is located at 1.78 Å from C10 and the deepest hole is located at 0.81 Å from N1.

Table 2
Experimental details

Crystal data
Chemical formula C12H10N2O4·H2O
Mr 264.24
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 3.7072 (3), 11.4251 (9), 14.3713 (13)
α, β, γ (°) 70.748 (4), 88.425 (5), 83.284 (5)
V3) 570.68 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.16 × 0.12 × 0.07
 
Data collection
Diffractometer Bruker D8 Quest CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.689, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 10223, 2091, 1556
Rint 0.079
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.119, 1.02
No. of reflections 2091
No. of parameters 189
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.34
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXL2014 (Sheldrick, 2015b); software used to prepare material for publication: APEX3 (Bruker, 2016) and PLATON (Spek, 2015).

Methyl 5-(4-hydroxyphenyl)-6-oxo-1,6-dihydropyrazine-2-carboxylate monohydrate top
Crystal data top
C12H10N2O4·H2OZ = 2
Mr = 264.24F(000) = 276
Triclinic, P1Dx = 1.538 Mg m3
a = 3.7072 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4251 (9) ÅCell parameters from 3588 reflections
c = 14.3713 (13) Åθ = 2.8–25.3°
α = 70.748 (4)°µ = 0.12 mm1
β = 88.425 (5)°T = 100 K
γ = 83.284 (5)°Block, gold
V = 570.68 (8) Å30.16 × 0.12 × 0.07 mm
Data collection top
Bruker D8 Quest CCD
diffractometer
1556 reflections with I > 2σ(I)
φ and ω scansRint = 0.079
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.4°, θmin = 2.8°
Tmin = 0.689, Tmax = 0.745h = 44
10223 measured reflectionsk = 1313
2091 independent reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.2621P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2091 reflectionsΔρmax = 0.27 e Å3
189 parametersΔρmin = 0.34 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5384 (5)0.72898 (15)0.07116 (12)0.0208 (4)
O20.1695 (4)0.53640 (13)0.38440 (11)0.0185 (4)
O1W0.2759 (5)0.93868 (16)0.21323 (13)0.0215 (4)
O30.0237 (4)0.68091 (13)0.65526 (11)0.0166 (4)
O40.2049 (5)0.87280 (14)0.61292 (11)0.0198 (4)
N10.1665 (5)0.65746 (16)0.48160 (14)0.0125 (4)
N20.4133 (5)0.84534 (16)0.32977 (13)0.0137 (4)
C10.3041 (6)0.84329 (19)0.13426 (16)0.0133 (5)
H10.21060.91830.14580.016*
C20.3441 (6)0.84230 (19)0.03887 (16)0.0143 (5)
H20.27300.91570.01490.017*
C30.4887 (6)0.7337 (2)0.02149 (16)0.0145 (5)
C40.5883 (6)0.6262 (2)0.09990 (16)0.0154 (5)
H40.68970.55230.08790.018*
C50.5405 (6)0.62616 (19)0.19544 (16)0.0147 (5)
H50.60380.55160.24890.018*
C60.3997 (6)0.73496 (19)0.21435 (16)0.0123 (5)
C70.3548 (6)0.74126 (19)0.31435 (16)0.0128 (5)
C80.2279 (6)0.63618 (19)0.39424 (16)0.0115 (5)
C90.2278 (6)0.76628 (19)0.49603 (16)0.0121 (5)
C100.3518 (6)0.85802 (19)0.42030 (16)0.0137 (5)
H100.39720.93320.43030.016*
C110.1537 (6)0.78086 (19)0.59361 (16)0.0137 (5)
C120.0733 (6)0.6846 (2)0.75253 (17)0.0179 (5)
H12A0.19030.61030.78860.027*
H12B0.24150.75960.74660.027*
H12C0.14620.68630.78830.027*
H1N0.070 (8)0.593 (3)0.531 (2)0.043 (9)*
H1O0.451 (9)0.807 (3)0.114 (2)0.056 (10)*
H1W0.224 (9)0.914 (3)0.261 (3)0.049 (10)*
H2W0.388 (9)1.008 (3)0.238 (2)0.048 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0321 (10)0.0195 (9)0.0097 (9)0.0020 (7)0.0026 (7)0.0052 (7)
O20.0303 (10)0.0138 (8)0.0131 (9)0.0090 (7)0.0062 (7)0.0054 (7)
O1W0.0334 (11)0.0164 (9)0.0145 (10)0.0058 (7)0.0007 (8)0.0038 (7)
O30.0252 (9)0.0146 (8)0.0116 (9)0.0058 (7)0.0059 (7)0.0056 (6)
O40.0313 (10)0.0151 (9)0.0152 (9)0.0061 (7)0.0014 (7)0.0069 (7)
N10.0165 (10)0.0102 (9)0.0103 (10)0.0025 (7)0.0026 (8)0.0026 (8)
N20.0169 (10)0.0117 (9)0.0113 (10)0.0004 (7)0.0010 (8)0.0026 (8)
C10.0131 (12)0.0117 (11)0.0152 (12)0.0004 (8)0.0007 (9)0.0047 (9)
C20.0162 (12)0.0130 (11)0.0113 (12)0.0011 (9)0.0009 (9)0.0008 (9)
C30.0150 (12)0.0187 (12)0.0105 (12)0.0034 (9)0.0011 (9)0.0054 (9)
C40.0156 (12)0.0140 (11)0.0167 (13)0.0018 (9)0.0027 (9)0.0066 (10)
C50.0157 (12)0.0127 (11)0.0132 (12)0.0012 (9)0.0006 (9)0.0008 (9)
C60.0109 (11)0.0142 (11)0.0116 (12)0.0045 (8)0.0017 (9)0.0029 (9)
C70.0108 (11)0.0127 (11)0.0131 (12)0.0012 (8)0.0004 (9)0.0019 (9)
C80.0117 (11)0.0116 (11)0.0104 (12)0.0007 (9)0.0009 (9)0.0029 (9)
C90.0112 (11)0.0124 (11)0.0129 (12)0.0002 (8)0.0014 (9)0.0047 (9)
C100.0151 (12)0.0120 (11)0.0152 (13)0.0014 (9)0.0006 (9)0.0060 (9)
C110.0145 (12)0.0126 (12)0.0136 (12)0.0003 (9)0.0004 (9)0.0042 (9)
C120.0212 (13)0.0217 (13)0.0110 (12)0.0027 (10)0.0053 (10)0.0061 (10)
Geometric parameters (Å, º) top
O1—C31.357 (3)C2—C31.390 (3)
O1—H1O0.93 (3)C2—H20.9500
O2—C81.238 (2)C3—C41.385 (3)
O1W—H1W0.86 (4)C4—C51.380 (3)
O1W—H2W0.90 (3)C4—H40.9500
O3—C111.326 (3)C5—C61.398 (3)
O3—C121.447 (3)C5—H50.9500
O4—C111.208 (3)C6—C71.466 (3)
N1—C81.364 (3)C7—C81.475 (3)
N1—C91.371 (3)C9—C101.352 (3)
N1—H1N0.94 (3)C9—C111.480 (3)
N2—C71.322 (3)C10—H100.9500
N2—C101.366 (3)C12—H12A0.9800
C1—C21.378 (3)C12—H12B0.9800
C1—C61.401 (3)C12—H12C0.9800
C1—H10.9500
C3—O1—H1O106 (2)C5—C6—C7122.84 (19)
H1W—O1W—H2W108 (3)C1—C6—C7118.6 (2)
C11—O3—C12116.91 (16)N2—C7—C6118.44 (19)
C8—N1—C9123.15 (19)N2—C7—C8121.0 (2)
C8—N1—H1N115.4 (18)C6—C7—C8120.44 (18)
C9—N1—H1N121.4 (18)O2—C8—N1121.07 (19)
C7—N2—C10120.27 (19)O2—C8—C7124.0 (2)
C2—C1—C6120.7 (2)N1—C8—C7114.90 (18)
C2—C1—H1119.6C10—C9—N1119.0 (2)
C6—C1—H1119.6C10—C9—C11121.71 (19)
C1—C2—C3119.9 (2)N1—C9—C11119.30 (19)
C1—C2—H2120.1C9—C10—N2121.63 (19)
C3—C2—H2120.1C9—C10—H10119.2
O1—C3—C4118.0 (2)N2—C10—H10119.2
O1—C3—C2121.90 (19)O4—C11—O3125.3 (2)
C4—C3—C2120.1 (2)O4—C11—C9123.6 (2)
C5—C4—C3120.1 (2)O3—C11—C9111.11 (18)
C5—C4—H4119.9O3—C12—H12A109.5
C3—C4—H4119.9O3—C12—H12B109.5
C4—C5—C6120.6 (2)H12A—C12—H12B109.5
C4—C5—H5119.7O3—C12—H12C109.5
C6—C5—H5119.7H12A—C12—H12C109.5
C5—C6—C1118.6 (2)H12B—C12—H12C109.5
C6—C1—C2—C31.5 (3)C9—N1—C8—C72.0 (3)
C1—C2—C3—O1178.9 (2)N2—C7—C8—O2179.8 (2)
C1—C2—C3—C40.8 (3)C6—C7—C8—O23.6 (3)
O1—C3—C4—C5179.5 (2)N2—C7—C8—N12.1 (3)
C2—C3—C4—C50.7 (3)C6—C7—C8—N1174.48 (19)
C3—C4—C5—C61.5 (3)C8—N1—C9—C100.7 (3)
C4—C5—C6—C10.8 (3)C8—N1—C9—C11179.89 (19)
C4—C5—C6—C7177.9 (2)N1—C9—C10—N20.7 (3)
C2—C1—C6—C50.7 (3)C11—C9—C10—N2178.7 (2)
C2—C1—C6—C7179.5 (2)C7—N2—C10—C90.5 (3)
C10—N2—C7—C6175.74 (19)C12—O3—C11—O41.8 (3)
C10—N2—C7—C80.9 (3)C12—O3—C11—C9177.80 (18)
C5—C6—C7—N2143.9 (2)C10—C9—C11—O41.6 (3)
C1—C6—C7—N234.8 (3)N1—C9—C11—O4179.0 (2)
C5—C6—C7—C839.4 (3)C10—C9—C11—O3178.00 (19)
C1—C6—C7—C8141.9 (2)N1—C9—C11—O31.4 (3)
C9—N1—C8—O2179.85 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.94 (3)1.88 (3)2.805 (2)172 (3)
O1—H1O···O1W0.93 (3)1.77 (3)2.682 (3)168 (3)
O1W—H1W···O4ii0.86 (4)2.02 (4)2.864 (2)167 (3)
O1W—H2W···N2iii0.90 (3)1.97 (3)2.838 (3)163 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: E-9395-2011.

Acknowledgements

The author acknowledges the XRD facility located at the Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, Saudi Arabia.

References

First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEltayeb, N. E. (2016). IUCrData, 1, x161689.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds