organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

A second polymorph of 3H-1,2-benzodi­thiole-3-thione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Constantine, BP, 325 Route de Ain El Bey, Constantine 25017, Algeria, and bC2P2 (CNRS-UMR 5265), COMS group, Lyon 1 University, ESCPE Lyon, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69626, France
*Correspondence e-mail: boukebbous.khaled@gmail.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 26 October 2016; accepted 8 November 2016; online 18 November 2016)

The title compound, C7H4S3, is crystallizes in the monoclinic space group P21/n; it is the second polymorph, the first having been reported recently in space group C2/c [Boukebbous et al. (2016[Boukebbous, K., Laifa, E. A. & De Mallmann, A. (2016). IUCrData, 1, x161688.]) IUCrData, 1, x161688]. The mol­ecule displays an almost planar geometry with two fused rings [S10—C3—C4—C9 torsion angle = 0.2 (5)°]. In the crystal, short S⋯S [3.555 (1) and 3.503 (1) Å] contacts and ππ aromatic stacking [shortest centroid–centroid separation = 4.006 (5) Å] sustain the three-dimensional mol­ecular packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound is a derivative of the 1,2-di­thiole-3-thione family, which has attracted much inter­est because of the important bioactive properties and potential applications (Li et al., 2016[Li, K. R., Yang, S. Q., Gong, Y. Q., Yang, H., Li, X. M., Zhao, Y. X., Yao, J., Jiang, Q. & Cao, C. (2016). Sci. Rep. 6, 13.], Russell et al., 2015[Russell, G. K., Gupta, R. C. & Vadhanam, M. V. (2015). Mutat. Res./Fundam. Mol. Mech. Mutagen. 774, 25-32.]), (Wallace et al., 2007[Wallace, J. L., Caliendo, G., Santagada, V., Cirino, G. & Fiorucci, S. (2007). Gastroenterology, 132, 261-271.]). Recrystallization of 3H-1,2-benzodi­thiole-3-thione in toluene solution leads to a monoclinic polymorph in the space group C2/c (Boukebbous et al., 2016[Boukebbous, K., Laifa, E. A. & De Mallmann, A. (2016). IUCrData, 1, x161688.]) whereas recrystallization in diethyl ether solution leads to a second polymorph in the monoclinic system, and space group P21/n (the present work). The 3H-1,2-benzodi­thiole-3-thione mol­ecule is composed of an aromatic ring fused with five-membered ring that containing two S atoms and thione functional groups (Fig. 1[link]). The mol­ecule displays an almost planar geometry with two fused rings [S10—C3—C4—C9 = 0.2 (5)°] with bond lengths of 2.064 (1), 1.738 (4), 1.726 (4) and 1.645 (3) Å for S1—S2, C5—S1, C3—S2 and C3—S10 bonds, respectively, and values of 94.0 (1) and 98.3 (1)° observed for angles C5—S1—S2 and S1—S2—C3, respectively. The angle S2—C3—C4 [113.1 (2)°] deviates from the expected value of 120° for a Csp2 atom (C3=S10 bond). Likewise, a minor deviation (about 3°) is observed for the angles S1—C5—C4 and C5—C4—C3 from the expected value of 120°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

In the crystal (Figs. 2[link], 3[link] and 4[link]), short S⋯S [S10⋯S1 = 3.555 (1) and S10⋯S2 = 3.503 (1) Å] contacts are observed. Moreover, parallel displaced ππ aromatic stacking inter­actions [shortest centroid-to-centroid separation = 4.006 (5) Å] linking adjacent mol­ecules into a three-dimensional network are observed.

[Figure 2]
Figure 2
A view of the packing of the title compound, with displacement ellipsoids drawn at the 50% probability level. The inversion centre at [0,0,0] with symmetry operation (−x, −y, −z) is shown as orange dots. The twofold screw axis in the [010] direction at ([{1\over 4}], y, [{1\over 4}]), with symmetry operation ([{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z), is shown as purple lines. The glide plane perpendicular to [010] with glide component [[{1\over 2}], 0, [{1\over 2}]] and symmetry operation ([{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z) is shown as light-blue planes.
[Figure 3]
Figure 3
A view along the c axis of the mol­ecular packing. The van der Waals inter­actions are shown as dashed blue lines. Centroids are shown as purple dots.
[Figure 4]
Figure 4
A view along the a axis of the mol­ecular packing. S⋯S contacts are shown as dashed blue lines. H atoms have been omitted for clarity.

Synthesis and crystallization

The synthesis of 4.5-benzo-3H-1.2-di­thiole-3-thione was based on a previously reported method (Klingsberg & Schreiber, 1962[Klingsberg, E. & Schreiber, A. M. (1962). J. Am. Chem. Soc. 84, 2941-2944.]). To a xylene solution (150 ml) of 2,2-di­thiodi­benzoic acid (10 g, 0.033 mol), phospho­rus penta­sulfide (10 g, 0.04 mol) dissolved in xylene was added. The mixture was stirred for 1 h at reflux. The orange precipitate that formed was washed successively with distilled water and cold ethanol at 273 K and dried at room temperature for several hours. The recrystallization process was performed from diethyl ether solution by slow evaporation and red needles in a yield of 80% were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 and N—H in the range 0.86–0.89 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. (Cooper et al., 2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]).

Table 1
Experimental details

Crystal data
Chemical formula C7H4S3
Mr 184.31
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 4.0062 (9), 10.739 (2), 17.178 (3)
β (°) 95.237 (18)
V3) 736.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.91
Crystal size (mm) 0.52 × 0.10 × 0.06
 
Data collection
Diffractometer Rigaku OD Xcalibur Atlas Gemini ultra
Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.724, 0.947
No. of measured, independent and observed [I > 2.0σ(I)] reflections 6569, 1832, 1482
Rint 0.053
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.101, 1.02
No. of reflections 1826
No. of parameters 91
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.77, −0.65
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

(I) top
Crystal data top
C7H4S3F(000) = 376
Mr = 184.31Dx = 1.663 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1997 reflections
a = 4.0062 (9) Åθ = 4.0–28.7°
b = 10.739 (2) ŵ = 0.91 mm1
c = 17.178 (3) ÅT = 150 K
β = 95.237 (18)°Needle, red
V = 736.0 (3) Å30.52 × 0.10 × 0.06 mm
Z = 4
Data collection top
Rigaku OD Xcalibur Atlas Gemini ultra
diffractometer
1832 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1482 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 10.4685 pixels mm-1θmax = 29.6°, θmin = 3.1°
ω scansh = 55
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
k = 1414
Tmin = 0.724, Tmax = 0.947l = 2323
6569 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.101 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 950. 0.135E + 04 758. 229.
S = 1.02(Δ/σ)max = 0.0002003
1826 reflectionsΔρmax = 0.77 e Å3
91 parametersΔρmin = 0.65 e Å3
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K.

Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.3003 (2)0.52792 (8)0.39805 (5)0.0270
S20.2657 (2)0.54353 (8)0.27784 (5)0.0258
C30.0569 (8)0.6841 (3)0.26919 (19)0.0228
C40.0083 (8)0.7372 (3)0.34414 (18)0.0199
C50.1038 (8)0.6697 (3)0.41121 (18)0.0211
C60.0514 (9)0.7144 (4)0.48597 (19)0.0271
C70.1163 (9)0.8257 (4)0.4917 (2)0.0303
C80.2306 (9)0.8936 (4)0.4254 (2)0.0302
C90.1787 (8)0.8500 (3)0.3520 (2)0.0238
S100.0445 (3)0.73941 (10)0.18088 (5)0.0327
H610.12750.66850.53060.0328*
H710.15650.85630.54160.0356*
H810.34590.96840.43050.0358*
H910.25540.89420.30710.0286*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0281 (4)0.0246 (4)0.0274 (4)0.0007 (3)0.0027 (3)0.0049 (3)
S20.0258 (4)0.0255 (4)0.0256 (4)0.0001 (3)0.0007 (3)0.0043 (3)
C30.0195 (14)0.0253 (16)0.0231 (15)0.0043 (13)0.0010 (12)0.0012 (13)
C40.0195 (14)0.0208 (15)0.0195 (14)0.0047 (12)0.0014 (11)0.0001 (12)
C50.0202 (14)0.0249 (16)0.0178 (14)0.0044 (13)0.0003 (12)0.0021 (12)
C60.0288 (17)0.0327 (18)0.0197 (15)0.0087 (15)0.0012 (13)0.0022 (14)
C70.0315 (18)0.037 (2)0.0236 (16)0.0089 (16)0.0090 (14)0.0076 (15)
C80.0275 (17)0.0282 (18)0.0357 (19)0.0018 (15)0.0076 (15)0.0047 (15)
C90.0204 (15)0.0251 (17)0.0260 (16)0.0030 (13)0.0029 (13)0.0058 (13)
S100.0417 (5)0.0381 (5)0.0175 (4)0.0030 (4)0.0016 (3)0.0039 (4)
Geometric parameters (Å, º) top
S1—S22.0637 (13)C6—C71.379 (5)
S1—C51.738 (4)C6—H610.938
S2—C31.726 (4)C7—C81.394 (5)
C3—C41.453 (4)C7—H710.945
C3—S101.645 (3)C8—C91.378 (5)
C4—C51.400 (4)C8—H810.935
C4—C91.403 (5)C9—H910.935
C5—C61.404 (5)
S2—S1—C593.97 (11)C5—C6—H61120.2
S1—S2—C398.33 (12)C7—C6—H61121.4
S2—C3—C4113.1 (2)C6—C7—C8121.4 (3)
S2—C3—S10118.2 (2)C6—C7—H71119.5
C4—C3—S10128.7 (3)C8—C7—H71119.2
C3—C4—C5117.1 (3)C7—C8—C9120.2 (3)
C3—C4—C9123.6 (3)C7—C8—H81120.1
C5—C4—C9119.3 (3)C9—C8—H81119.7
C4—C5—S1117.5 (2)C4—C9—C8119.8 (3)
C4—C5—C6120.8 (3)C4—C9—H91119.0
S1—C5—C6121.7 (3)C8—C9—H91121.2
C5—C6—C7118.4 (3)
 

Acknowledgements

We are grateful to The French National Center for Scientific Research (CNRS) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBoukebbous, K., Laifa, E. A. & De Mallmann, A. (2016). IUCrData, 1, x161688.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKlingsberg, E. & Schreiber, A. M. (1962). J. Am. Chem. Soc. 84, 2941–2944.  CrossRef CAS Web of Science Google Scholar
First citationLi, K. R., Yang, S. Q., Gong, Y. Q., Yang, H., Li, X. M., Zhao, Y. X., Yao, J., Jiang, Q. & Cao, C. (2016). Sci. Rep. 6, 13.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.  Google Scholar
First citationRussell, G. K., Gupta, R. C. & Vadhanam, M. V. (2015). Mutat. Res./Fundam. Mol. Mech. Mutagen. 774, 25–32.  Web of Science CrossRef CAS Google Scholar
First citationWallace, J. L., Caliendo, G., Santagada, V., Cirino, G. & Fiorucci, S. (2007). Gastroenterology, 132, 261–271.  CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds