organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Phenyl-1-[(1R,4R)-1,7,7-tri­methyl-2-oxobi­cyclo[2.2.1]heptan-3-yl­­idene]hydrazinecarbo­thio­amide

CROSSMARK_Color_square_no_text.svg

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Maria, Av. Roraima s/n, Campus Universitário, 97105-900 Santa Maria-RS, Brazil, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus Universitário, 49100-000 São Cristóvão-SE, Brazil
*Correspondence e-mail: leandro_bresolin@yahoo.com.br

Edited by I. Brito, University of Antofagasta, Chile (Received 12 October 2016; accepted 27 October 2016; online 1 November 2016)

In the title compound, C17H21N3OS [common nomenclature: (R)-camphor 4-phenyl­thio­semicarbazone], the N—N—C—(S)—N fragment deviates slightly from planarity, with a maximum deviation of 0.0259 (12) Å for the hydrazinic N atom, and makes an angle of 29.55 (0)° with the aromatic ring. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond and a short N—H⋯N inter­action with graph-set motifs S(6) and S(5), respectively. In the crystal, the centrosymmetric arrangement of the mol­ecules resembles a herringbone packing motif along [001]. As a result of the steric effects of the camphor entity, an apolar organic periphery and the intra­molecular nature of the hydrogen bonds, neither strong nor relevant inter­molecular inter­actions are observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our study of the structural chemistry of camphor-thio­semicarbazone derivatives (Nogueira et al. 2015[Nogueira, V. S., Bresolin, L., Näther, C., Jess, I. & Oliveira, A. B. de (2015). Acta Cryst. E71, m234-m235.]), we report herein the crystal structure of R-camphor-4-phenyl­thio­semicarbazone (Fig. 1[link]). The mol­ecule is not planar due to the camphor entity. The N1—N2—C11(=S1)—N3 fragment is almost planar with the maximum deviation being 0.0259 (12) Å for N2, and makes a dihedral angle of 29.55 (8)° with the aromatic ring. Two intra­molecular inter­actions N3—H22⋯N1 with graph-set motif S(5), and N22–H21⋯O1 with graph-set motif S(6) rings] are the outstanding features of the structure (Fig. 1[link] and Table 1[link]). The R-camphor entity contributes two chiral centres to the mol­ecule at C3 and C6, but since the space group is centrosymmetric no effect on cell anisotropy should be expected due to mol­ecular chirality.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1 0.88 2.08 2.769 (2) 135
N3—H22⋯N1 0.88 2.16 2.607 (2) 111
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the labelling and displacement ellipsoids drawn at the 40% probability level.

In the crystal, the mol­ecules show neither strong nor relevant inter­molecular inter­actions of any kind (e.g. no inter­molecular hydrogen-bonding or ππ inter­actions), probably due to the steric effect of the camphor entity with a substantial apolar organic periphery for such a small mol­ecule and to the intra­molecular nature of the hydrogen bonding. The structure shows a centrosymmetric herringbone packing motif, Fig. 2[link].

[Figure 2]
Figure 2
Part of the crystal structure of the title compound, viewed along [100]. The centrosymmetric arrangement of the mol­ecules resembles a herringbone packing motif.

Synthesis and crystallization

Starting materials were commercially available and were used without further purification. R-camphor was oxidized with SeO2 to the respective 1,2-diketone (Młochowski & Wójtowicz-Młochowska, 2015[Młochowski, J. & Wójtowicz-Młochowska, H. (2015). Molecules, 20, 10205-10243.]). The synthesis of the R-camphor-4-phenyl­thio­semicarbazone derivative was adapted from a procedure reported previously (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602-2606.]). The glacial acetic acid-catalysed reaction of the 1,2-diketone (3 mmol) and 4-phenyl­thio­semicarbazide (3 mmol) in ethanol (50 ml) was stirred and refluxed for 6 h. Single crystals suitable for X-ray diffraction were obtained from an ethanol solution by solvent evaporation. The assignment of the correct absolute configuration was assured by the use of enanti­opure reagent. The C3 and C6 chiral centres of the R-camphor remain unchanged during the synthesis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H21N3OS
Mr 315.43
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 11.7947 (9), 14.2221 (11), 18.7864 (15)
V3) 3151.3 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.22 × 0.20 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.956, 0.972
No. of measured, independent and observed [I > 2σ(I)] reflections 94152, 3933, 2879
Rint 0.105
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.108, 1.08
No. of reflections 3933
No. of parameters 202
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

4-Phenyl-1-[(1R,4R)-1,7,7-trimethyl-2-oxobicyclo[2.2.1]heptan-3-ylidene]hydrazinecarbothioamide top
Crystal data top
C17H21N3OSF(000) = 1344
Mr = 315.43Dx = 1.330 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9840 reflections
a = 11.7947 (9) Åθ = 2.5–27.4°
b = 14.2221 (11) ŵ = 0.21 mm1
c = 18.7864 (15) ÅT = 100 K
V = 3151.3 (4) Å3Block, yellow
Z = 80.22 × 0.20 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
3933 independent reflections
Radiation source: fine-focus sealed tube, Bruker APEXII2879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.105
φ and ω scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1513
Tmin = 0.956, Tmax = 0.972k = 1918
94152 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.031P)2 + 3.2431P]
where P = (Fo2 + 2Fc2)/3
3933 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.71911 (16)0.04008 (13)0.44422 (10)0.0189 (4)
C20.75320 (16)0.14112 (13)0.43709 (10)0.0186 (4)
C30.67901 (17)0.18022 (14)0.37840 (10)0.0218 (4)
C40.72486 (17)0.13055 (15)0.30938 (10)0.0245 (4)
H10.80850.13550.30660.029*
H20.69150.15920.26620.029*
C50.68791 (17)0.02744 (15)0.31681 (10)0.0233 (4)
H30.63560.00910.27800.028*
H40.75420.01520.31650.028*
C60.62677 (16)0.02577 (14)0.39040 (10)0.0210 (4)
H50.57610.02950.39900.025*
C70.56806 (16)0.12318 (14)0.39241 (10)0.0212 (4)
C80.51481 (18)0.14473 (16)0.46468 (10)0.0271 (5)
H60.44980.10300.47250.041*
H70.57110.13470.50230.041*
H80.48940.21030.46560.041*
C90.47884 (17)0.13701 (15)0.33435 (11)0.0262 (4)
H90.45660.20340.33250.039*
H100.51050.11820.28830.039*
H110.41220.09830.34510.039*
C100.67500 (19)0.28552 (14)0.37539 (11)0.0286 (5)
H120.75220.31030.37080.043*
H130.62970.30530.33430.043*
H140.64050.30980.41910.043*
C110.88749 (15)0.05697 (13)0.57968 (10)0.0181 (4)
C120.86509 (16)0.22342 (13)0.61970 (9)0.0182 (4)
C130.77715 (16)0.28713 (14)0.62938 (10)0.0204 (4)
H150.70510.27500.60880.025*
C140.79379 (17)0.36801 (14)0.66875 (10)0.0236 (4)
H170.73340.41140.67500.028*
C150.89868 (18)0.38574 (14)0.69908 (10)0.0240 (4)
H180.91030.44080.72680.029*
C160.98636 (17)0.32276 (14)0.68867 (10)0.0237 (4)
H191.05830.33490.70950.028*
C170.97111 (16)0.24224 (14)0.64831 (10)0.0210 (4)
H201.03260.20040.64030.025*
N10.75715 (13)0.02268 (11)0.48709 (8)0.0193 (3)
N20.84297 (13)0.00435 (11)0.53138 (8)0.0193 (3)
H210.86980.06200.52870.023*
N30.84240 (13)0.14351 (11)0.57670 (8)0.0200 (3)
H220.79130.15200.54320.024*
O10.82511 (11)0.18192 (9)0.47199 (7)0.0223 (3)
S10.98673 (4)0.01558 (4)0.63485 (3)0.02212 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0174 (9)0.0210 (10)0.0183 (9)0.0009 (7)0.0013 (7)0.0005 (7)
C20.0167 (9)0.0216 (10)0.0176 (9)0.0007 (8)0.0002 (8)0.0005 (7)
C30.0229 (10)0.0205 (10)0.0221 (10)0.0016 (8)0.0038 (8)0.0036 (8)
C40.0201 (10)0.0347 (12)0.0187 (9)0.0003 (9)0.0001 (8)0.0026 (8)
C50.0205 (10)0.0294 (11)0.0201 (9)0.0058 (8)0.0017 (8)0.0031 (8)
C60.0186 (9)0.0221 (10)0.0224 (9)0.0017 (8)0.0037 (8)0.0026 (8)
C70.0198 (10)0.0225 (10)0.0214 (10)0.0012 (8)0.0010 (8)0.0012 (8)
C80.0198 (10)0.0387 (12)0.0228 (10)0.0044 (9)0.0017 (8)0.0022 (9)
C90.0218 (10)0.0276 (11)0.0292 (11)0.0031 (9)0.0056 (9)0.0003 (8)
C100.0357 (12)0.0196 (10)0.0305 (11)0.0002 (9)0.0083 (9)0.0022 (9)
C110.0158 (9)0.0219 (10)0.0167 (9)0.0024 (7)0.0021 (7)0.0011 (7)
C120.0199 (9)0.0185 (9)0.0161 (9)0.0016 (7)0.0007 (7)0.0008 (7)
C130.0170 (10)0.0247 (10)0.0196 (9)0.0000 (7)0.0015 (7)0.0018 (8)
C140.0237 (10)0.0234 (10)0.0238 (10)0.0034 (8)0.0016 (8)0.0007 (8)
C150.0306 (11)0.0203 (10)0.0209 (10)0.0029 (8)0.0011 (8)0.0015 (8)
C160.0202 (10)0.0260 (11)0.0249 (10)0.0049 (8)0.0027 (8)0.0002 (8)
C170.0163 (9)0.0227 (10)0.0241 (10)0.0003 (8)0.0003 (7)0.0003 (8)
N10.0161 (8)0.0226 (9)0.0193 (8)0.0005 (7)0.0031 (6)0.0002 (7)
N20.0186 (8)0.0195 (8)0.0200 (8)0.0026 (6)0.0041 (6)0.0021 (6)
N30.0187 (8)0.0211 (8)0.0204 (8)0.0006 (7)0.0057 (6)0.0027 (6)
O10.0217 (7)0.0240 (7)0.0211 (7)0.0056 (6)0.0030 (6)0.0000 (6)
S10.0192 (2)0.0241 (2)0.0230 (2)0.0002 (2)0.00591 (19)0.00026 (19)
Geometric parameters (Å, º) top
C1—N11.283 (2)C9—H110.9800
C1—C21.498 (3)C10—H120.9800
C1—C61.500 (3)C10—H130.9800
C2—O11.219 (2)C10—H140.9800
C2—C31.513 (3)C11—N31.342 (2)
C3—C101.499 (3)C11—N21.364 (2)
C3—C71.562 (3)C11—S11.6705 (19)
C3—C41.572 (3)C12—C171.387 (3)
C4—C51.536 (3)C12—C131.389 (3)
C4—H10.9900C12—N31.420 (2)
C4—H20.9900C13—C141.382 (3)
C5—C61.559 (3)C13—H150.9500
C5—H30.9900C14—C151.385 (3)
C5—H40.9900C14—H170.9500
C6—C71.549 (3)C15—C161.382 (3)
C6—H51.0000C15—H180.9500
C7—C81.527 (3)C16—C171.385 (3)
C7—C91.528 (3)C16—H190.9500
C8—H60.9800C17—H200.9500
C8—H70.9800N1—N21.366 (2)
C8—H80.9800N2—H210.8800
C9—H90.9800N3—H220.8800
C9—H100.9800
N1—C1—C2129.01 (17)H7—C8—H8109.5
N1—C1—C6125.63 (17)C7—C9—H9109.5
C2—C1—C6105.35 (16)C7—C9—H10109.5
O1—C2—C1126.53 (17)H9—C9—H10109.5
O1—C2—C3128.26 (18)C7—C9—H11109.5
C1—C2—C3105.21 (15)H9—C9—H11109.5
C10—C3—C2114.37 (17)H10—C9—H11109.5
C10—C3—C7119.91 (18)C3—C10—H12109.5
C2—C3—C799.83 (15)C3—C10—H13109.5
C10—C3—C4115.37 (17)H12—C10—H13109.5
C2—C3—C4103.70 (15)C3—C10—H14109.5
C7—C3—C4101.18 (15)H12—C10—H14109.5
C5—C4—C3104.85 (15)H13—C10—H14109.5
C5—C4—H1110.8N3—C11—N2113.96 (16)
C3—C4—H1110.8N3—C11—S1128.81 (15)
C5—C4—H2110.8N2—C11—S1117.21 (14)
C3—C4—H2110.8C17—C12—C13119.77 (17)
H1—C4—H2108.9C17—C12—N3123.02 (17)
C4—C5—C6103.08 (15)C13—C12—N3117.11 (17)
C4—C5—H3111.1C14—C13—C12120.47 (18)
C6—C5—H3111.1C14—C13—H15119.8
C4—C5—H4111.1C12—C13—H15119.8
C6—C5—H4111.1C13—C14—C15119.91 (19)
H3—C5—H4109.1C13—C14—H17120.0
C1—C6—C7100.76 (15)C15—C14—H17120.0
C1—C6—C5105.05 (15)C16—C15—C14119.48 (19)
C7—C6—C5102.40 (15)C16—C15—H18120.3
C1—C6—H5115.6C14—C15—H18120.3
C7—C6—H5115.6C15—C16—C17121.07 (19)
C5—C6—H5115.6C15—C16—H19119.5
C8—C7—C9109.00 (16)C17—C16—H19119.5
C8—C7—C6112.64 (16)C16—C17—C12119.26 (18)
C9—C7—C6113.92 (16)C16—C17—H20120.4
C8—C7—C3112.97 (16)C12—C17—H20120.4
C9—C7—C3112.94 (16)C1—N1—N2116.47 (16)
C6—C7—C394.92 (15)C11—N2—N1120.72 (15)
C7—C8—H6109.5C11—N2—H21119.6
C7—C8—H7109.5N1—N2—H21119.6
H6—C8—H7109.5C11—N3—C12129.47 (16)
C7—C8—H8109.5C11—N3—H22115.3
H6—C8—H8109.5C12—N3—H22115.3
N1—C1—C2—O10.0 (3)C10—C3—C7—C862.0 (2)
C6—C1—C2—O1178.98 (18)C2—C3—C7—C863.6 (2)
N1—C1—C2—C3179.61 (19)C4—C3—C7—C8169.85 (16)
C6—C1—C2—C30.60 (19)C10—C3—C7—C962.3 (2)
O1—C2—C3—C1015.6 (3)C2—C3—C7—C9172.08 (16)
C1—C2—C3—C10163.93 (17)C4—C3—C7—C965.87 (19)
O1—C2—C3—C7145.0 (2)C10—C3—C7—C6179.16 (17)
C1—C2—C3—C734.58 (18)C2—C3—C7—C653.51 (16)
O1—C2—C3—C4110.8 (2)C4—C3—C7—C652.71 (16)
C1—C2—C3—C469.58 (18)C17—C12—C13—C141.6 (3)
C10—C3—C4—C5163.66 (17)N3—C12—C13—C14178.03 (17)
C2—C3—C4—C570.49 (18)C12—C13—C14—C150.2 (3)
C7—C3—C4—C532.65 (18)C13—C14—C15—C161.0 (3)
C3—C4—C5—C61.47 (19)C14—C15—C16—C170.1 (3)
N1—C1—C6—C7145.01 (19)C15—C16—C17—C121.9 (3)
C2—C1—C6—C734.04 (18)C13—C12—C17—C162.6 (3)
N1—C1—C6—C5108.9 (2)N3—C12—C17—C16178.86 (17)
C2—C1—C6—C572.07 (18)C2—C1—N1—N22.1 (3)
C4—C5—C6—C169.27 (18)C6—C1—N1—N2179.05 (17)
C4—C5—C6—C735.63 (18)N3—C11—N2—N12.4 (2)
C1—C6—C7—C863.84 (19)S1—C11—N2—N1176.39 (13)
C5—C6—C7—C8172.04 (16)C1—N1—N2—C11178.80 (17)
C1—C6—C7—C9171.36 (16)N2—C11—N3—C12177.82 (17)
C5—C6—C7—C963.2 (2)S1—C11—N3—C120.8 (3)
C1—C6—C7—C353.57 (16)C17—C12—N3—C1133.0 (3)
C5—C6—C7—C354.63 (16)C13—C12—N3—C11150.65 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O10.882.082.769 (2)135
N3—H22···N10.882.162.607 (2)111
 

Acknowledgements

ABO is an associate researcher in the project `Di­nitrosyl complexes containing thiol and/or thio­semicarbazone: synthesis, characterization and treatment against cancer', founded by FAPESP, Proc. 2015/12098–0, and acknowledges Professor José C. M. Pereira (São Paulo State University, Brazil) for his support during this work. ABO also acknowledges Professor Vanessa C. Gervini for the invitation to be a visiting professor at the Federal University of Rio Grande, Brazil, where this work was developed. The authors acknowledge Professor Manfredo Hörner (Federal University of Santa Maria, Brazil) for access to the experimental facilities.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFreund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationMłochowski, J. & Wójtowicz-Młochowska, H. (2015). Molecules, 20, 10205–10243.  Web of Science PubMed Google Scholar
First citationNogueira, V. S., Bresolin, L., Näther, C., Jess, I. & Oliveira, A. B. de (2015). Acta Cryst. E71, m234–m235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds