organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl {[5-acetyl-3-cyano-4-(4-meth­­oxy­phen­yl)-6-methyl­pyridin-2-yl]sulfan­yl}acetate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Sana'a University, Sana'a, Yemen, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, and eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by R. J. Butcher, Howard University, USA (Received 28 September 2016; accepted 25 October 2016; online 1 November 2016)

In the title mol­ecule, C20H20N2O4S, the dihedral angle between the benzene and pyridine rings is 60.97 (7)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridine scaffold compounds continue to attract great inter­est due to their wide variety of inter­esting biological activities. They exhibit anti­cancer, analgesic, anti­microbial and anti­depressant activities (Kumar et al., 2011[Kumar, S., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). J. Chronother. Drug Deliv, 2, 71-78.]). In addition, pyridines are used in the pharmaceutical industry as raw materials for various drugs, vitamins and fungicides (Kumar et al., 2011[Kumar, S., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). J. Chronother. Drug Deliv, 2, 71-78.]). These facts promoted us to synthesize and determine the crystal structure of the title compound.

The dihedral angle between the benzene and pyridine rings of the title mol­ecule (Fig. 1[link]) is 60.97 (7)°. The torsion C10—C11—O4—C20, C5—C6—C15—C16, C5—C6—C15—O3, N1—C3—S1—C2, C3—S1—C2—C1, C2—C1—O2—C18 and C1—O2—C18—C19 are 3.6 (2), 73.37 (19), −109.33 (17), −20.05 (13), −73.89 (12), −174.92 (13) and 75.85 (18), respectively. All bonds and bond angles in the title mol­ecule are within the normal range.

[Figure 1]
Figure 1
The title mol­ecule shown with 50% probability displacement ellipsoids.

In the crystal structure, adjacent mol­ecules are connected via C—H⋯O hydrogen bonds and C—H⋯π inter­actions with each to other, forming a three-dimensional network (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the pyridine (N1/C3–C7) and benzene (C8–C13) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O3i 0.99 2.52 3.150 (2) 121
C2—H2B⋯O1ii 0.99 2.52 3.3345 (19) 140
C19—H19C⋯O2iii 0.98 2.65 3.437 (2) 138
C9—H9⋯Cg2iv 0.95 2.88 3.7803 (17) 159
C20—H20BCg1v 0.98 2.84 3.5619 (18) 131
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+2, -z+2; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Packing of the title mol­ecule viewed down the c axis with the hydrogen bonds shown by dotted lines.

Synthesis and crystallization

To a mixture of 5-acetyl-3-cyano-4-(4-meth­oxy­phen­yl)-6-methyl­pyridine-2(1H)-thione (10 mmol) and ethyl chloro­acetate (10 mmol) in ethanol (20 ml), sodium acetate trihydrate (11 mmol) was added. The resulting mixture was heated under reflux for 2 h and then allowed to cool. The precipitated solid was collected and recrystallized from ethanol (yield 98%; m.p. 409–410 K). IR: 2200 (CN), 1730 (C=O, ester), 1690 (C=O, acet­yl) cm-1. 1H NMR (CDCl3): 6.9–7.4 (dd, 4H, ArH); 4.1–4.3 (q, 2H, OCH2); 3.9 (s, 2H, SCH2); 3.7 (s, 3H, OCH3); 2.4 (s, 3H, COCH3); 1.8 (s, 3H, CH3 at C-6); 1.1–1.3 (t, 3H, CH3 of ester).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H20N2O4S
Mr 384.44
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 13.4883 (2), 8.23273 (16), 16.8923 (3)
β (°) 93.8000 (17)
V3) 1871.69 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.78
Crystal size (mm) 0.49 × 0.46 × 0.22
 
Data collection
Diffractometer Rigaku Oxford Diffraction
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.600, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6913, 3553, 3278
Rint 0.026
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.05
No. of reflections 3553
No. of parameters 249
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.29
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Ethyl {[5-acetyl-3-cyano-4-(4-methoxyphenyl)-6-methylpyridin-2-yl]sulfanyl}acetate top
Crystal data top
C20H20N2O4SF(000) = 808
Mr = 384.44Dx = 1.364 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 13.4883 (2) ÅCell parameters from 3634 reflections
b = 8.23273 (16) Åθ = 4.1–71.5°
c = 16.8923 (3) ŵ = 1.78 mm1
β = 93.8000 (17)°T = 173 K
V = 1871.69 (6) Å3Irregular, colourless
Z = 40.49 × 0.46 × 0.22 mm
Data collection top
Rigaku Oxford Diffraction
diffractometer
3553 independent reflections
Radiation source: Enhance (Cu) X-ray Source3278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.0416 pixels mm-1θmax = 71.2°, θmin = 3.3°
ω scansh = 1615
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 96
Tmin = 0.600, Tmax = 1.000l = 2020
6913 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.4141P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.29 e Å3
3553 reflectionsΔρmin = 0.29 e Å3
249 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0045 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62202 (3)1.02799 (5)0.73252 (2)0.02850 (15)
O10.41273 (8)0.94698 (14)0.79041 (6)0.0281 (3)
O20.45128 (8)1.05466 (14)0.91107 (6)0.0282 (3)
O30.75861 (9)0.29044 (14)0.87453 (8)0.0367 (3)
O41.05277 (9)0.32068 (14)0.56752 (7)0.0331 (3)
N10.63715 (9)0.78612 (15)0.83887 (7)0.0222 (3)
N20.80930 (12)0.90691 (19)0.60820 (9)0.0378 (4)
C10.46752 (11)1.02342 (17)0.83507 (9)0.0222 (3)
C20.56182 (11)1.10919 (18)0.81526 (9)0.0248 (3)
H2A0.60931.10560.86250.030*
H2B0.54601.22470.80430.030*
C30.67375 (10)0.84809 (18)0.77408 (8)0.0212 (3)
C40.75159 (10)0.77387 (18)0.73602 (8)0.0208 (3)
C50.79313 (10)0.62958 (18)0.76679 (8)0.0204 (3)
C60.75585 (10)0.56783 (18)0.83602 (8)0.0207 (3)
C70.67650 (10)0.64734 (18)0.86890 (8)0.0217 (3)
C80.86906 (11)0.54322 (18)0.72251 (8)0.0208 (3)
C90.95693 (11)0.61926 (19)0.70468 (9)0.0254 (3)
H90.97220.72350.72620.030*
C101.02267 (11)0.54571 (19)0.65599 (9)0.0243 (3)
H101.08390.59660.64630.029*
C110.99780 (11)0.39687 (18)0.62161 (9)0.0231 (3)
C120.91130 (11)0.31666 (18)0.64035 (9)0.0245 (3)
H120.89580.21310.61800.029*
C130.84814 (10)0.38804 (18)0.69154 (9)0.0221 (3)
H130.79050.33170.70570.027*
C140.78475 (11)0.84630 (19)0.66472 (9)0.0254 (3)
C150.80209 (11)0.41777 (18)0.87574 (8)0.0221 (3)
C160.90163 (13)0.4406 (2)0.91893 (11)0.0347 (4)
H16A0.89590.51870.96220.052*
H16B0.94880.48170.88210.052*
H16C0.92530.33630.94080.052*
C170.62897 (13)0.5812 (2)0.94013 (10)0.0302 (4)
H17A0.58970.66680.96350.045*
H17B0.68070.54370.97940.045*
H17C0.58550.49010.92400.045*
C180.35925 (12)0.9943 (2)0.94011 (10)0.0300 (4)
H18A0.30381.01880.90060.036*
H18B0.34621.05170.98990.036*
C190.36222 (13)0.8147 (2)0.95549 (10)0.0340 (4)
H19A0.36770.75660.90530.051*
H19B0.30120.78130.97940.051*
H19C0.41970.78880.99180.051*
C201.13748 (12)0.4044 (2)0.54211 (10)0.0327 (4)
H20A1.16960.33810.50300.049*
H20B1.18450.42440.58780.049*
H20C1.11660.50830.51800.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0316 (2)0.0278 (2)0.0272 (2)0.00865 (15)0.01043 (16)0.00996 (14)
O10.0252 (5)0.0322 (6)0.0262 (6)0.0021 (5)0.0026 (4)0.0026 (4)
O20.0259 (5)0.0345 (6)0.0248 (6)0.0081 (5)0.0054 (4)0.0048 (4)
O30.0307 (6)0.0269 (6)0.0525 (7)0.0050 (5)0.0021 (5)0.0100 (5)
O40.0322 (6)0.0278 (6)0.0413 (6)0.0027 (5)0.0161 (5)0.0049 (5)
N10.0195 (6)0.0241 (6)0.0234 (6)0.0019 (5)0.0037 (5)0.0025 (5)
N20.0459 (9)0.0391 (8)0.0298 (7)0.0026 (7)0.0132 (6)0.0077 (6)
C10.0222 (7)0.0207 (7)0.0235 (7)0.0042 (6)0.0010 (6)0.0022 (6)
C20.0251 (7)0.0211 (7)0.0288 (7)0.0009 (6)0.0075 (6)0.0008 (6)
C30.0189 (7)0.0226 (7)0.0221 (7)0.0005 (5)0.0012 (5)0.0018 (5)
C40.0202 (6)0.0230 (7)0.0195 (6)0.0021 (5)0.0029 (5)0.0005 (5)
C50.0172 (6)0.0230 (7)0.0208 (6)0.0024 (5)0.0008 (5)0.0020 (6)
C60.0186 (7)0.0214 (7)0.0219 (7)0.0016 (5)0.0000 (5)0.0001 (6)
C70.0206 (7)0.0237 (7)0.0207 (7)0.0020 (6)0.0016 (5)0.0011 (6)
C80.0186 (7)0.0236 (7)0.0201 (7)0.0016 (5)0.0004 (5)0.0010 (5)
C90.0233 (7)0.0258 (8)0.0270 (7)0.0044 (6)0.0018 (6)0.0041 (6)
C100.0189 (7)0.0262 (8)0.0279 (7)0.0019 (6)0.0030 (6)0.0001 (6)
C110.0228 (7)0.0228 (7)0.0240 (7)0.0053 (6)0.0035 (6)0.0026 (6)
C120.0250 (7)0.0200 (7)0.0285 (7)0.0001 (6)0.0019 (6)0.0000 (6)
C130.0188 (7)0.0225 (7)0.0250 (7)0.0003 (5)0.0014 (5)0.0029 (6)
C140.0252 (7)0.0260 (8)0.0254 (8)0.0011 (6)0.0051 (6)0.0003 (6)
C150.0236 (7)0.0219 (7)0.0214 (7)0.0020 (6)0.0058 (5)0.0010 (6)
C160.0357 (9)0.0247 (8)0.0416 (10)0.0044 (7)0.0126 (7)0.0005 (7)
C170.0317 (8)0.0309 (8)0.0291 (8)0.0052 (7)0.0115 (6)0.0082 (7)
C180.0246 (8)0.0367 (9)0.0294 (8)0.0035 (7)0.0077 (6)0.0032 (7)
C190.0348 (8)0.0386 (9)0.0292 (8)0.0068 (7)0.0055 (7)0.0022 (7)
C200.0278 (8)0.0364 (9)0.0352 (8)0.0043 (7)0.0127 (7)0.0006 (7)
Geometric parameters (Å, º) top
S1—C21.7917 (15)C9—H90.9500
S1—C31.7630 (15)C9—C101.388 (2)
O1—C11.1988 (19)C10—H100.9500
O2—C11.3415 (18)C10—C111.388 (2)
O2—C181.4522 (19)C11—C121.395 (2)
O3—C151.201 (2)C12—H120.9500
O4—C111.3666 (18)C12—C131.384 (2)
O4—C201.425 (2)C13—H130.9500
N1—C31.3318 (18)C15—C161.497 (2)
N1—C71.345 (2)C16—H16A0.9800
N2—C141.145 (2)C16—H16B0.9800
C1—C21.512 (2)C16—H16C0.9800
C2—H2A0.9900C17—H17A0.9800
C2—H2B0.9900C17—H17B0.9800
C3—C41.407 (2)C17—H17C0.9800
C4—C51.399 (2)C18—H18A0.9900
C4—C141.441 (2)C18—H18B0.9900
C5—C61.399 (2)C18—C191.502 (2)
C5—C81.489 (2)C19—H19A0.9800
C6—C71.400 (2)C19—H19B0.9800
C6—C151.520 (2)C19—H19C0.9800
C7—C171.502 (2)C20—H20A0.9800
C8—C91.391 (2)C20—H20B0.9800
C8—C131.402 (2)C20—H20C0.9800
C3—S1—C2100.99 (7)C11—C12—H12120.0
C1—O2—C18117.07 (12)C13—C12—C11119.96 (14)
C11—O4—C20117.44 (13)C13—C12—H12120.0
C3—N1—C7118.48 (12)C8—C13—H13119.9
O1—C1—O2124.74 (14)C12—C13—C8120.19 (13)
O1—C1—C2126.77 (14)C12—C13—H13119.9
O2—C1—C2108.39 (12)N2—C14—C4178.24 (17)
S1—C2—H2A108.4O3—C15—C6121.09 (13)
S1—C2—H2B108.4O3—C15—C16122.63 (14)
C1—C2—S1115.46 (11)C16—C15—C6116.22 (13)
C1—C2—H2A108.4C15—C16—H16A109.5
C1—C2—H2B108.4C15—C16—H16B109.5
H2A—C2—H2B107.5C15—C16—H16C109.5
N1—C3—S1119.38 (11)H16A—C16—H16B109.5
N1—C3—C4122.54 (13)H16A—C16—H16C109.5
C4—C3—S1118.07 (11)H16B—C16—H16C109.5
C3—C4—C14118.99 (13)C7—C17—H17A109.5
C5—C4—C3119.46 (13)C7—C17—H17B109.5
C5—C4—C14121.53 (13)C7—C17—H17C109.5
C4—C5—C6117.52 (13)H17A—C17—H17B109.5
C4—C5—C8119.40 (12)H17A—C17—H17C109.5
C6—C5—C8122.95 (13)H17B—C17—H17C109.5
C5—C6—C7119.22 (13)O2—C18—H18A109.1
C5—C6—C15120.31 (13)O2—C18—H18B109.1
C7—C6—C15120.46 (13)O2—C18—C19112.44 (14)
N1—C7—C6122.72 (13)H18A—C18—H18B107.8
N1—C7—C17115.53 (13)C19—C18—H18A109.1
C6—C7—C17121.75 (13)C19—C18—H18B109.1
C9—C8—C5121.23 (13)C18—C19—H19A109.5
C9—C8—C13118.85 (13)C18—C19—H19B109.5
C13—C8—C5119.64 (13)C18—C19—H19C109.5
C8—C9—H9119.4H19A—C19—H19B109.5
C10—C9—C8121.27 (14)H19A—C19—H19C109.5
C10—C9—H9119.4H19B—C19—H19C109.5
C9—C10—H10120.4O4—C20—H20A109.5
C11—C10—C9119.14 (14)O4—C20—H20B109.5
C11—C10—H10120.4O4—C20—H20C109.5
O4—C11—C10123.93 (13)H20A—C20—H20B109.5
O4—C11—C12115.68 (14)H20A—C20—H20C109.5
C10—C11—C12120.37 (14)H20B—C20—H20C109.5
S1—C3—C4—C5178.97 (11)C5—C8—C13—C12170.24 (13)
S1—C3—C4—C140.71 (19)C6—C5—C8—C9125.95 (16)
O1—C1—C2—S125.7 (2)C6—C5—C8—C1360.16 (19)
O2—C1—C2—S1157.87 (10)C7—N1—C3—S1178.89 (10)
O4—C11—C12—C13176.80 (13)C7—N1—C3—C40.1 (2)
N1—C3—C4—C50.2 (2)C7—C6—C15—O371.7 (2)
N1—C3—C4—C14178.08 (13)C7—C6—C15—C16105.64 (17)
C1—O2—C18—C1975.85 (18)C8—C5—C6—C7172.72 (13)
C2—S1—C3—N120.05 (13)C8—C5—C6—C158.3 (2)
C2—S1—C3—C4161.11 (12)C8—C9—C10—C113.0 (2)
C3—S1—C2—C173.89 (12)C9—C8—C13—C123.8 (2)
C3—N1—C7—C61.6 (2)C9—C10—C11—O4174.13 (14)
C3—N1—C7—C17177.76 (13)C9—C10—C11—C124.7 (2)
C3—C4—C5—C61.4 (2)C10—C11—C12—C132.1 (2)
C3—C4—C5—C8174.50 (13)C11—C12—C13—C82.2 (2)
C4—C5—C6—C73.1 (2)C13—C8—C9—C101.2 (2)
C4—C5—C6—C15175.95 (12)C14—C4—C5—C6179.65 (13)
C4—C5—C8—C958.34 (19)C14—C4—C5—C83.7 (2)
C4—C5—C8—C13115.55 (16)C15—C6—C7—N1175.72 (13)
C5—C6—C7—N13.3 (2)C15—C6—C7—C174.9 (2)
C5—C6—C7—C17176.07 (14)C18—O2—C1—O11.6 (2)
C5—C6—C15—O3109.33 (17)C18—O2—C1—C2174.92 (13)
C5—C6—C15—C1673.37 (19)C20—O4—C11—C103.6 (2)
C5—C8—C9—C10172.76 (14)C20—O4—C11—C12175.24 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the pyridine (N1/C3–C7) and benzene (C8–C13) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.992.523.150 (2)121
C2—H2B···O1ii0.992.523.3345 (19)140
C19—H19C···O2iii0.982.653.437 (2)138
C9—H9···Cg2iv0.952.883.7803 (17)159
C20—H20B···Cg1v0.982.843.5619 (18)131
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+2, z+2; (iv) x+2, y+1/2, z+3/2; (v) x+2, y1/2, z+3/2.
 

Acknowledgements

JPJ would like to acknowledge the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X ray diffractometer.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, S., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). J. Chronother. Drug Deliv, 2, 71–78.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds