metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[2-(2,2′-Bipyridin-6-yl-κ2N1,N1′)benzo[b][1,5]naphthyridine-κN1]di­chlorido­zinc

CROSSMARK_Color_square_no_text.svg

aGraduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
*Correspondence e-mail: ohtsu@sci.u-toyama.ac.jp

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 5 November 2016; accepted 7 November 2016; online 10 November 2016)

The coordination environment of the zinc(II) ion in the title complex, [ZnCl2(C22H14N4)], is distorted trigonal–bipyramidal comprised by three N atoms from the 2-([2,2′-bipyridin]-6-yl)benzo[b][1,5]naphthyridine ligand and two Cl ions. In the crystal, neighbouring mol­ecules are connected by ππ stacking inter­actions along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In order to gain valuable insights into the nature of the nicotinamide adenine dinucleotide (NAD) function and to develop photorenewable hydride reagents utilizing the NAD+/NADH redox function in NAD, we have so far investigated transition-metal complexes having NAD+/NADH-analogous ligands (Fukushima et al., 2010[Fukushima, T., Wada, T., Ohtsu, H. & Tanaka, K. (2010). Dalton Trans. 39, 11526-11534.]; Ohtsu & Tanaka, 2012a[Ohtsu, H. & Tanaka, K. (2012a). Chem. Commun. 48, 1796-1798.],b[Ohtsu, H. & Tanaka, K. (2012b). Angew. Chem. Int. Ed. 51, 9792-9795.]; Ohtsu et al., 2015[Ohtsu, H., Tsuge, K. & Tanaka, K. (2015). J. Photochem. Photobiol. Chem. 313, 163-167.], 2016[Ohtsu, H., Fujii, S., Tsuge, K. & Tanaka, K. (2016). Dalton Trans. 45, 16130-16133.]). In this paper, a new zinc complex having a new NAD+/NADH-analogous ligand bbn (bbn = 2-([2,2′-bipyridin]-6-yl)benzo[b][1,5]naphthyridine) has been synthesized and structurally characterized.

The mol­ecular structure of the title complex, [Zn(bbn)Cl2], is shown in Fig. 1[link]. The zinc(II) ion is surrounded by three N atoms from the bbn ligand and two Cl ions. The bond lengths from the zinc to each of donor N atoms and chloride are Zn1—N1 = 2.191 (2), Zn1—N2 = 2.085 (2), Zn1—N3 = 2.230 (2), Zn1—Cl1 = 2.2732 (7) and Zn1—Cl2 = 2.2504 (7) Å. A range of five-coordinate geometries varying from trigonal–bipyramidal to square–pyramidal can be indicated by the τ parameter ranging from τ = 1 for an ideal trigonal–bipyramidal geometry to τ = 0 for an ideal square–pyramidal geometry (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The τ value for the zinc(II) ion in the title complex is obtained as τ = 0.44 by using the equation τ = (β − α)/60 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), where α = N2—Zn1—Cl2 [123.76 (6)°], β = N1—Zn1—N3 [150.24 (8)°]. In spite of the τ value of 0.44, the coordination environment of the zinc(II) ion in [Zn(bbn)Cl2] can be better described as distorted trigonal–bipyramidal.

[Figure 1]
Figure 1
The mol­ecular structure of the title complex, with displacement ellipsoids at the 50% probability level.

This title complex presents inter­molecular ππ stacking inter­actions along the a-axis direction as shown in Fig. 2[link]. The distances between the centroids of rings A (C14–17/C21/C22) and B (N1/C1–5)i [symmetry code: (i) [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z], and between the centroids of the rings C (N3/C11–13/C19/C20) and D (N1/C1–5)ii [symmetry code: (ii) [{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z] are 3.5513 (3) and 3.5237 (3) Å, respectively.

[Figure 2]
Figure 2
The crystal packing of the title complex viewed along the a axis. H atoms have been omitted for clarity.

Synthesis and crystallization

The bbn ligand was prepared in the same manner as that for the synthesis of pbn (Koizumi & Tanaka, 2005[Koizumi, T.-a. & Tanaka, K. (2005). Angew. Chem. Int. Ed. 44, 5891-5894.]) using 6-acetyl-2,2′-bi­pyridine (Vlugt et al., 2008[Vlugt, J. I. van der, Demeshko, S., Dechert, S. & Meyer, F. (2008). Inorg. Chem. 47, 1576-1585.]) instead of 2-acetyl-pyridine. 1H NMR (300 MHz, CDCl3): 9.13 (d, 1H), 9.10 (s, 1H), 8.79 (dd, 1H), 8.75–8.65 (m, 3H), 8.57 (dd, 1H), 8.29 (dd, 1H), 8.14 (dt, 1H), 8.07 (t, 1H), 7.96–7.82 (m, 2H), 7.63 (ddd, 1H), 7.38 (ddd, 1H).

To an aceto­nitrile solution (4 ml) of ZnCl2 (20.4 mg, 0.15 mmol) was added dropwise bbn (50.0 mg, 0.15 mmol) in di­chloro­methane (4 ml). The resulting yellow precipitate was filtered and dissolved in hot methanol for recrystallization. After the solution was left to stand for a few weeks at room temperature, yellow crystals of the title complex [Zn(bbn)Cl2] were obtained (yield; 18.2 mg, 25.6%). Elemental analysis, found: C 55.82, H 2.99, N 11.71%; calculated for C22H14Cl2N4Zn: C 56.14, H 3.00, N 11.90%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [ZnCl2(C22H14N4)]
Mr 470.67
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 10.8040 (2), 13.6433 (3), 13.2159 (3)
β (°) 97.8812 (7)
V3) 1929.65 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.57
Crystal size (mm) 0.08 × 0.08 × 0.07
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.718, 0.896
No. of measured, independent and observed [I > 2σ(I)] reflections 18736, 4400, 4050
Rint 0.026
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.12
No. of reflections 4400
No. of parameters 262
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.95, −0.35
Computer programs: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), CrystalStructure (Rigaku, 2016[Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. Crystal Maker, Bicester, England.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2016), Mercury (Macrae et al., 2008) and CrystalMaker (Palmer, 2007); software used to prepare material for publication: CrystalStructure (Rigaku, 2016) and publCIF (Westrip, 2010).

[2-(2,2'-Bipyridin-6-yl-κ2N1,N1')benzo[b][1,5]naphthyridine-κN1]dichloridozinc top
Crystal data top
[ZnCl2(C22H14N4)]F(000) = 952.00
Mr = 470.67Dx = 1.620 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 10.8040 (2) ÅCell parameters from 16370 reflections
b = 13.6433 (3) Åθ = 3.0–27.4°
c = 13.2159 (3) ŵ = 1.57 mm1
β = 97.8812 (7)°T = 173 K
V = 1929.65 (7) Å3Block, yellow
Z = 40.08 × 0.08 × 0.07 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4050 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.026
ω scansθmax = 27.4°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1314
Tmin = 0.718, Tmax = 0.896k = 1717
18736 measured reflectionsl = 1617
4400 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0424P)2 + 2.004P]
where P = (Fo2 + 2Fc2)/3
4400 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.35 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
ZN10.14600 (3)0.22246 (2)0.60516 (2)0.02931 (10)
CL10.35323 (6)0.19462 (5)0.60386 (5)0.04174 (16)
CL20.00807 (7)0.17449 (5)0.47109 (5)0.03958 (16)
N10.10596 (19)0.10447 (16)0.70834 (14)0.0311 (4)
N20.09581 (19)0.29423 (16)0.73276 (16)0.0323 (4)
N30.15042 (19)0.38149 (15)0.56697 (16)0.0317 (4)
N40.2032 (2)0.56306 (16)0.3716 (2)0.0424 (5)
C10.1099 (2)0.00880 (19)0.68850 (19)0.0342 (5)
H10.1327290.0112450.6247290.041*
C20.0824 (3)0.0629 (2)0.7564 (2)0.0387 (6)
H20.0874950.1304940.7401610.046*
C30.0476 (3)0.0333 (2)0.8480 (2)0.0423 (6)
H30.0285890.0804930.8964160.051*
C40.0406 (3)0.0652 (2)0.86885 (19)0.0406 (6)
H40.0147660.0864960.9311370.049*
C50.0715 (2)0.1336 (2)0.79818 (18)0.0324 (5)
C60.0691 (2)0.2413 (2)0.81226 (19)0.0351 (5)
C70.0414 (3)0.2863 (2)0.9013 (2)0.0470 (7)
H70.0213990.2486850.9573270.056*
C80.0440 (3)0.3871 (3)0.9053 (2)0.0526 (8)
H80.0265620.4194590.9653250.063*
C90.0717 (3)0.4421 (2)0.8232 (2)0.0454 (7)
H90.0736960.5116920.8264190.055*
C100.0967 (2)0.3928 (2)0.7355 (2)0.0358 (5)
C110.1253 (2)0.44115 (18)0.6410 (2)0.0341 (5)
C120.1246 (2)0.54527 (19)0.6295 (2)0.0386 (6)
H120.1058820.5863410.6834230.046*
C130.1508 (2)0.58476 (19)0.5410 (2)0.0418 (6)
H130.1506430.6539600.5330030.050*
C140.2521 (3)0.5421 (2)0.2008 (3)0.0526 (8)
H140.2544090.6111960.1925110.063*
C150.2746 (3)0.4838 (3)0.1234 (2)0.0535 (8)
H150.2940940.5125980.0620670.064*
C160.2700 (3)0.3804 (3)0.1316 (2)0.0472 (7)
H160.2852780.3405500.0756340.057*
C170.2437 (3)0.3380 (2)0.2195 (2)0.0427 (6)
H170.2401440.2686360.2243790.051*
C180.1986 (2)0.35777 (18)0.3966 (2)0.0350 (5)
H180.1979900.2886970.4055750.042*
C190.1787 (2)0.52359 (18)0.4595 (2)0.0353 (5)
C200.1766 (2)0.41966 (17)0.47647 (19)0.0316 (5)
C210.2247 (2)0.5025 (2)0.2952 (2)0.0386 (6)
C220.2214 (2)0.39714 (19)0.3045 (2)0.0348 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
ZN10.03447 (16)0.02843 (15)0.02587 (15)0.00193 (10)0.00711 (11)0.00438 (10)
CL10.0385 (3)0.0367 (3)0.0536 (4)0.0085 (3)0.0192 (3)0.0075 (3)
CL20.0525 (4)0.0360 (3)0.0293 (3)0.0078 (3)0.0021 (3)0.0062 (2)
N10.0297 (10)0.0408 (11)0.0230 (9)0.0008 (8)0.0043 (7)0.0005 (8)
N20.0292 (10)0.0378 (11)0.0296 (10)0.0037 (8)0.0033 (8)0.0088 (8)
N30.0298 (10)0.0284 (10)0.0359 (11)0.0027 (8)0.0002 (8)0.0058 (8)
N40.0390 (12)0.0280 (11)0.0578 (15)0.0030 (9)0.0022 (10)0.0031 (10)
C10.0352 (12)0.0379 (13)0.0290 (12)0.0033 (10)0.0026 (9)0.0006 (10)
C20.0384 (14)0.0403 (14)0.0357 (14)0.0071 (11)0.0011 (10)0.0032 (11)
C30.0415 (14)0.0531 (17)0.0317 (13)0.0083 (12)0.0026 (10)0.0098 (11)
C40.0361 (13)0.0625 (18)0.0241 (12)0.0003 (12)0.0069 (10)0.0024 (11)
C50.0267 (11)0.0448 (14)0.0257 (11)0.0016 (10)0.0035 (9)0.0021 (10)
C60.0287 (12)0.0499 (15)0.0269 (12)0.0038 (11)0.0048 (9)0.0052 (10)
C70.0525 (17)0.0563 (18)0.0343 (14)0.0067 (14)0.0137 (12)0.0090 (12)
C80.0576 (18)0.060 (2)0.0421 (16)0.0051 (15)0.0148 (13)0.0171 (14)
C90.0438 (15)0.0411 (15)0.0510 (17)0.0050 (12)0.0050 (12)0.0175 (12)
C100.0264 (11)0.0411 (14)0.0387 (13)0.0036 (10)0.0000 (9)0.0122 (11)
C110.0256 (11)0.0310 (12)0.0436 (14)0.0036 (9)0.0022 (10)0.0113 (10)
C120.0314 (12)0.0314 (13)0.0514 (16)0.0028 (10)0.0002 (11)0.0121 (11)
C130.0339 (13)0.0226 (11)0.0650 (18)0.0028 (10)0.0066 (12)0.0071 (11)
C140.0563 (18)0.0423 (16)0.0577 (19)0.0096 (14)0.0032 (14)0.0151 (14)
C150.0502 (17)0.064 (2)0.0461 (17)0.0095 (15)0.0075 (13)0.0184 (15)
C160.0427 (15)0.0589 (18)0.0408 (15)0.0016 (13)0.0088 (12)0.0064 (13)
C170.0460 (15)0.0411 (15)0.0418 (15)0.0001 (12)0.0088 (12)0.0061 (11)
C180.0372 (13)0.0260 (11)0.0413 (14)0.0007 (10)0.0043 (10)0.0002 (10)
C190.0273 (11)0.0254 (11)0.0508 (15)0.0013 (9)0.0036 (10)0.0013 (10)
C200.0254 (11)0.0263 (11)0.0414 (13)0.0010 (9)0.0017 (9)0.0002 (9)
C210.0297 (12)0.0361 (13)0.0479 (15)0.0039 (10)0.0020 (10)0.0076 (11)
C220.0297 (12)0.0329 (13)0.0411 (14)0.0000 (10)0.0018 (10)0.0053 (10)
Geometric parameters (Å, º) top
ZN1—N22.085 (2)C8—C91.385 (5)
ZN1—N12.191 (2)C8—H80.9500
ZN1—N32.230 (2)C9—C101.398 (4)
ZN1—CL22.2504 (7)C9—H90.9500
ZN1—CL12.2732 (7)C10—C111.482 (4)
N1—C11.333 (3)C11—C121.429 (4)
N1—C51.352 (3)C12—C131.352 (4)
N2—C61.339 (3)C12—H120.9500
N2—C101.345 (3)C13—C191.427 (4)
N3—C111.329 (3)C13—H130.9500
N3—C201.369 (3)C14—C151.344 (5)
N4—C191.340 (4)C14—C211.427 (4)
N4—C211.349 (4)C14—H140.9500
C1—C21.387 (4)C15—C161.417 (5)
C1—H10.9500C15—H150.9500
C2—C31.377 (4)C16—C171.363 (4)
C2—H20.9500C16—H160.9500
C3—C41.377 (4)C17—C221.430 (4)
C3—H30.9500C17—H170.9500
C4—C51.393 (4)C18—C221.383 (4)
C4—H40.9500C18—C201.397 (4)
C5—C61.481 (4)C18—H180.9500
C6—C71.396 (4)C19—C201.436 (3)
C7—C81.375 (5)C21—C221.444 (4)
C7—H70.9500
N2—ZN1—N175.30 (8)C9—C8—H8119.4
N2—ZN1—N375.05 (8)C8—C9—C10118.3 (3)
N1—ZN1—N3150.24 (8)C8—C9—H9120.8
N2—ZN1—CL2123.76 (6)C10—C9—H9120.8
N1—ZN1—CL296.34 (6)N2—C10—C9120.1 (3)
N3—ZN1—CL297.88 (5)N2—C10—C11115.1 (2)
N2—ZN1—CL1116.76 (6)C9—C10—C11124.8 (3)
N1—ZN1—CL199.25 (6)N3—C11—C12122.0 (3)
N3—ZN1—CL196.27 (6)N3—C11—C10115.8 (2)
CL2—ZN1—CL1119.48 (3)C12—C11—C10122.2 (2)
C1—N1—C5118.7 (2)C13—C12—C11119.3 (3)
C1—N1—ZN1125.63 (16)C13—C12—H12120.4
C5—N1—ZN1115.62 (17)C11—C12—H12120.4
C6—N2—C10121.3 (2)C12—C13—C19120.7 (2)
C6—N2—ZN1119.28 (17)C12—C13—H13119.6
C10—N2—ZN1119.31 (18)C19—C13—H13119.6
C11—N3—C20119.8 (2)C15—C14—C21121.5 (3)
C11—N3—ZN1114.62 (18)C15—C14—H14119.2
C20—N3—ZN1125.54 (16)C21—C14—H14119.2
C19—N4—C21118.5 (2)C14—C15—C16121.3 (3)
N1—C1—C2123.2 (2)C14—C15—H15119.4
N1—C1—H1118.4C16—C15—H15119.4
C2—C1—H1118.4C17—C16—C15120.1 (3)
C3—C2—C1118.1 (3)C17—C16—H16120.0
C3—C2—H2121.0C15—C16—H16120.0
C1—C2—H2121.0C16—C17—C22120.5 (3)
C4—C3—C2119.5 (3)C16—C17—H17119.7
C4—C3—H3120.3C22—C17—H17119.7
C2—C3—H3120.3C22—C18—C20120.0 (2)
C3—C4—C5119.7 (2)C22—C18—H18120.0
C3—C4—H4120.2C20—C18—H18120.0
C5—C4—H4120.2N4—C19—C13120.5 (2)
N1—C5—C4120.8 (2)N4—C19—C20122.8 (2)
N1—C5—C6114.4 (2)C13—C19—C20116.7 (2)
C4—C5—C6124.8 (2)N3—C20—C18120.5 (2)
N2—C6—C7121.2 (3)N3—C20—C19121.4 (2)
N2—C6—C5115.3 (2)C18—C20—C19118.1 (2)
C7—C6—C5123.5 (3)N4—C21—C14120.0 (3)
C8—C7—C6117.8 (3)N4—C21—C22122.5 (2)
C8—C7—H7121.1C14—C21—C22117.5 (3)
C6—C7—H7121.1C18—C22—C17122.8 (2)
C7—C8—C9121.2 (3)C18—C22—C21118.1 (2)
C7—C8—H8119.4C17—C22—C21119.1 (2)
C5—N1—C1—C21.1 (4)N2—C10—C11—C12177.2 (2)
ZN1—N1—C1—C2179.35 (19)C9—C10—C11—C122.8 (4)
N1—C1—C2—C31.0 (4)N3—C11—C12—C130.3 (4)
C1—C2—C3—C40.4 (4)C10—C11—C12—C13179.6 (2)
C2—C3—C4—C51.5 (4)C11—C12—C13—C190.2 (4)
C1—N1—C5—C40.0 (3)C21—C14—C15—C161.1 (5)
ZN1—N1—C5—C4178.34 (19)C14—C15—C16—C170.8 (5)
C1—N1—C5—C6179.5 (2)C15—C16—C17—C220.4 (5)
ZN1—N1—C5—C61.2 (3)C21—N4—C19—C13177.6 (2)
C3—C4—C5—N11.3 (4)C21—N4—C19—C201.3 (4)
C3—C4—C5—C6179.2 (2)C12—C13—C19—N4179.3 (2)
C10—N2—C6—C70.1 (4)C12—C13—C19—C200.3 (4)
ZN1—N2—C6—C7176.6 (2)C11—N3—C20—C18177.6 (2)
C10—N2—C6—C5179.9 (2)ZN1—N3—C20—C182.6 (3)
ZN1—N2—C6—C53.3 (3)C11—N3—C20—C190.5 (3)
N1—C5—C6—N22.9 (3)ZN1—N3—C20—C19179.22 (17)
C4—C5—C6—N2176.6 (2)C22—C18—C20—N3178.1 (2)
N1—C5—C6—C7177.1 (3)C22—C18—C20—C190.1 (4)
C4—C5—C6—C73.4 (4)N4—C19—C20—N3179.6 (2)
N2—C6—C7—C80.9 (4)C13—C19—C20—N30.7 (3)
C5—C6—C7—C8179.1 (3)N4—C19—C20—C181.4 (4)
C6—C7—C8—C90.8 (5)C13—C19—C20—C18177.5 (2)
C7—C8—C9—C100.2 (5)C19—N4—C21—C14179.5 (2)
C6—N2—C10—C91.2 (4)C19—N4—C21—C220.3 (4)
ZN1—N2—C10—C9175.60 (19)C15—C14—C21—N4179.6 (3)
C6—N2—C10—C11178.8 (2)C15—C14—C21—C220.3 (4)
ZN1—N2—C10—C114.5 (3)C20—C18—C22—C17179.5 (2)
C8—C9—C10—N21.2 (4)C20—C18—C22—C211.6 (4)
C8—C9—C10—C11178.7 (3)C16—C17—C22—C18177.7 (3)
C20—N3—C11—C120.0 (3)C16—C17—C22—C211.2 (4)
ZN1—N3—C11—C12179.77 (18)N4—C21—C22—C181.8 (4)
C20—N3—C11—C10179.3 (2)C14—C21—C22—C18178.1 (3)
ZN1—N3—C11—C100.9 (3)N4—C21—C22—C17179.3 (2)
N2—C10—C11—N32.2 (3)C14—C21—C22—C170.9 (4)
C9—C10—C11—N3177.9 (2)
 

Acknowledgements

This work was supported in part by Grant-in-Aids for Scientific Research C (No. 25410067) from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFukushima, T., Wada, T., Ohtsu, H. & Tanaka, K. (2010). Dalton Trans. 39, 11526–11534.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKoizumi, T.-a. & Tanaka, K. (2005). Angew. Chem. Int. Ed. 44, 5891–5894.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOhtsu, H., Fujii, S., Tsuge, K. & Tanaka, K. (2016). Dalton Trans. 45, 16130–16133.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhtsu, H. & Tanaka, K. (2012a). Chem. Commun. 48, 1796–1798.  Web of Science CSD CrossRef CAS Google Scholar
First citationOhtsu, H. & Tanaka, K. (2012b). Angew. Chem. Int. Ed. 51, 9792–9795.  Web of Science CrossRef CAS Google Scholar
First citationOhtsu, H., Tsuge, K. & Tanaka, K. (2015). J. Photochem. Photobiol. Chem. 313, 163–167.  Web of Science CrossRef CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. Crystal Maker, Bicester, England.  Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVlugt, J. I. van der, Demeshko, S., Dechert, S. & Meyer, F. (2008). Inorg. Chem. 47, 1576–1585.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds