organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Anilino-4-chloro-3H-1,2-di­thiol-3-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Constantine, BP, 325 Route de Ain El Bey, Constantine 25017, Algeria, and bC2P2 (CNRS-UMR 5265), COMS group, Lyon 1 University, ESCPE Lyon, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69626, France
*Correspondence e-mail: boukebbous.khaled@gmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 27 October 2016; accepted 28 October 2016; online 4 November 2016)

In the title compound, C9H6ClNOS2, the two rings subtend a dihedral angle of 51.9 (7)°. The S—S bond has a length of 2.061 (2) Å. In the crystal, hydrogen-bonding inter­actions and ππ stacking [centroid–centroid distance = 3.927 (2) Å] contacts link the mol­ecules into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C9H6ClONS2, is a derivative of 1,2-di­thiole-3-one, a family of bioactive compounds (He et al., 2004[He, X., Reeve, A. M. E., Desai, U. R., Kellogg, G. E. & Reynolds, K. A. (2004). Antimicrob. Agents Chemother. 48, 3093-3102.]). It crystallizes from mixture of ethanol and di­chloro­methane in the monoclinic space group P21/n (Fig. 1[link]). The mol­ecule is composed of two rings with a dihedral angle of 51.9 (7)° between them. The length of the S—S bond is 2.061 (2) Å and the angles C9—N8—C3, C3—S2—S1, S2—S1—C5 and C5—C4—C3 are 126.2 (4), 94.5 (2), 96.8 (2) and 120.5 (4)°, respectively.

[Figure 1]
Figure 1
The title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

In the crystal (Figs. 2[link] and 3[link]), the three-dimensional mol­ecular packing is sustained by hydrogen-bonding inter­actions (C10—H101⋯O6i, N8—H81⋯O6ii with H⋯A lengths of 2.55 and 1.99 Å, respectively; Table 1[link]) and parallel-displaced ππ aromatic-stacking [centroid–centroid distance = 3.927 (2) Å] contacts between successive mol­ecules in the [100] direction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H101⋯O6i 0.93 2.50 3.320 (7) 147 (1)
N8—H81⋯O6ii 0.86 1.99 2.794 (7) 155 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing. Hydrogen-bonding inter­actions are shown as dashed blue lines. Centroids are shown as green dots. The centroid–centroid distance is shown as a light-green dashed line.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing. Displacement ellipsoids drawn at the 50% probability level. Hydrogen-bonding inter­actions are shown as dashed blue lines.

Synthesis and crystallization

To a methanol solution (50 ml) of 4,5-di­chloro-1,2-di­thiol-3-one (C3Cl2OS2, 1 g) and NaHCO3 (0.5 g), 0.6 g of aniline was added. The mixture was stirred for 20 h at room temperature. Then, 100 ml of distilled water was added, and the formed precipitate was filtered and washed 3 times with distilled water and dried. The product was crystallized in an ethyl acetate solution in 80% yield. The recrystallization process was performed from a 1:1 mixture of ethanol and di­chloro­methane solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H6ClNOS2
Mr 243.74
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 3.9268 (6), 20.752 (3), 12.3431 (19)
β (°) 99.182 (14)
V3) 992.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.77
Crystal size (mm) 0.38 × 0.14 × 0.09
 
Data collection
Diffractometer Rigaku Xcalibur Atlas Gemini ultra
Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.915, 0.968
No. of measured, independent and observed [I > 2.0σ(I)] reflections 2403, 2403, 1929
Rint 0.040
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.155, 1.01
No. of reflections 2393
No. of parameters 131
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.79, −1.02
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]), CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.]). Weighting scheme: Chebychev polynomial (Watkin, 1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]; Prince, 1982[Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

(I) top
Crystal data top
C9H6ClNOS2F(000) = 496
Mr = 243.74Dx = 1.630 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2296 reflections
a = 3.9268 (6) Åθ = 3.6–29.1°
b = 20.752 (3) ŵ = 0.77 mm1
c = 12.3431 (19) ÅT = 150 K
β = 99.182 (14)°Needle, light yellow
V = 992.9 (3) Å30.38 × 0.14 × 0.09 mm
Z = 4
Data collection top
Rigaku Xcalibur Atlas Gemini ultra
diffractometer
2403 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1929 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 10.4685 pixels mm-1θmax = 29.6°, θmin = 3.4°
ω scansh = 55
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
k = 028
Tmin = 0.915, Tmax = 0.968l = 015
2403 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155 Method, part 1, Chebychev polynomial, (Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.173E + 04 0.271E + 04 0.145E + 04 406.
S = 1.01(Δ/σ)max = 0.001
2393 reflectionsΔρmax = 0.79 e Å3
131 parametersΔρmin = 1.02 e Å3
3 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Absorption correction: CrysAlisPro 1.171.38.43 (Rigaku OD, 2015) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark and Reid (1995). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 and N—H in the range 0.86–0.89?Å) and Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom, after which the positions were refined with riding constraints (Cooper et al., 2010). The hydrogen atom bonded to N was refined with a restraint on the bond length [N8—H81 = 0.82?(2)?Å]. The bond angles C3—N8—H81 and C9—N8—H81 were restrained to be equal with an e.s.d. of 2.0) and the isotropic displacement parameter of H81 was restrained to 1.2Ueq of N8 with an e.s.d of 0.002.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.9772 (3)0.66331 (5)0.65293 (9)0.0245
S20.8932 (3)0.60518 (5)0.51592 (9)0.0236
C30.6605 (12)0.6630 (2)0.4331 (4)0.0220
C40.6087 (12)0.7208 (2)0.4813 (4)0.0212
C50.7448 (12)0.7319 (2)0.5925 (4)0.0216
O60.7259 (10)0.78060 (16)0.6465 (3)0.0299
Cl70.3850 (3)0.78231 (5)0.40834 (9)0.0294
N80.5500 (11)0.64918 (18)0.3272 (3)0.0232
C90.6041 (13)0.5905 (2)0.2735 (3)0.0218
C100.7287 (13)0.5929 (2)0.1738 (4)0.0257
C110.7676 (13)0.5366 (3)0.1182 (4)0.0288
C120.6940 (14)0.4775 (2)0.1607 (4)0.0290
C130.5678 (13)0.4752 (2)0.2596 (4)0.0274
C140.5209 (13)0.5316 (2)0.3163 (4)0.0266
H1010.78380.63270.14590.0308*
H1110.85020.53820.05120.0351*
H1210.72810.43940.12350.0353*
H1310.51290.43520.28790.0330*
H1410.43240.52980.38250.0320*
H810.458 (14)0.6801 (12)0.2864 (18)0.0279*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0318 (6)0.0215 (5)0.0180 (5)0.0009 (5)0.0023 (4)0.0008 (4)
S20.0313 (6)0.0198 (5)0.0184 (5)0.0034 (4)0.0001 (4)0.0008 (4)
C30.025 (2)0.023 (2)0.0180 (19)0.0024 (18)0.0046 (16)0.0000 (16)
C40.027 (2)0.0169 (19)0.020 (2)0.0009 (17)0.0025 (17)0.0003 (15)
C50.027 (2)0.0182 (18)0.0195 (19)0.0046 (18)0.0039 (16)0.0024 (15)
O60.043 (2)0.0218 (16)0.0222 (16)0.0002 (15)0.0040 (15)0.0048 (12)
Cl70.0421 (7)0.0216 (5)0.0231 (5)0.0071 (5)0.0003 (5)0.0029 (4)
N80.036 (2)0.0176 (16)0.0144 (16)0.0023 (16)0.0012 (15)0.0022 (13)
C90.031 (2)0.0161 (18)0.0167 (19)0.0006 (18)0.0023 (16)0.0028 (15)
C100.031 (2)0.025 (2)0.0195 (19)0.0011 (19)0.0005 (17)0.0004 (17)
C110.030 (2)0.036 (3)0.020 (2)0.003 (2)0.0036 (17)0.0052 (19)
C120.033 (2)0.023 (2)0.029 (2)0.003 (2)0.0006 (19)0.0103 (18)
C130.033 (2)0.023 (2)0.025 (2)0.004 (2)0.0014 (18)0.0012 (18)
C140.032 (2)0.024 (2)0.022 (2)0.003 (2)0.0008 (18)0.0028 (17)
Geometric parameters (Å, º) top
S1—S22.0605 (15)C9—C141.391 (6)
S1—C51.789 (5)C10—C111.376 (7)
S2—C31.738 (5)C10—H1010.932
C3—C41.367 (6)C11—C121.382 (7)
C3—N81.342 (5)C11—H1110.936
C4—C51.410 (6)C12—C131.390 (7)
C4—Cl71.721 (4)C12—H1210.934
C5—O61.220 (5)C13—C141.391 (6)
N8—C91.417 (5)C13—H1310.940
N8—H810.859 (19)C14—H1410.939
C9—C101.396 (6)
S2—S1—C596.84 (15)C10—C9—C14120.1 (4)
S1—S2—C394.51 (16)C9—C10—C11119.5 (5)
S2—C3—C4116.8 (3)C9—C10—H101119.4
S2—C3—N8118.9 (3)C11—C10—H101121.2
C4—C3—N8124.3 (4)C10—C11—C12121.2 (5)
C3—C4—C5120.5 (4)C10—C11—H111119.4
C3—C4—Cl7121.5 (3)C12—C11—H111119.4
C5—C4—Cl7118.0 (3)C11—C12—C13119.3 (4)
S1—C5—C4111.4 (3)C11—C12—H121120.6
S1—C5—O6120.2 (3)C13—C12—H121120.2
C4—C5—O6128.4 (4)C12—C13—C14120.5 (5)
C3—N8—C9126.2 (4)C12—C13—H131119.4
C3—N8—H81116.9 (14)C14—C13—H131120.1
C9—N8—H81116.6 (14)C9—C14—C13119.4 (4)
N8—C9—C10118.8 (4)C9—C14—H141120.5
N8—C9—C14121.0 (4)C13—C14—H141120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H101···O6i0.932.503.320 (7)147 (1)
N8—H81···O6ii0.861.992.794 (7)155 (2)
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x1/2, y+3/2, z1/2.
 

Acknowledgements

We are grateful to The French National Center for Scientific Research (CNRS) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHe, X., Reeve, A. M. E., Desai, U. R., Kellogg, G. E. & Reynolds, K. A. (2004). Antimicrob. Agents Chemother. 48, 3093–3102.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds