organic compounds
5-Anilino-4-chloro-3H-1,2-dithiol-3-one
aDepartment of Chemistry, University of Constantine, BP, 325 Route de Ain El Bey, Constantine 25017, Algeria, and bC2P2 (CNRS-UMR 5265), COMS group, Lyon 1 University, ESCPE Lyon, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69626, France
*Correspondence e-mail: boukebbous.khaled@gmail.com
In the title compound, C9H6ClNOS2, the two rings subtend a dihedral angle of 51.9 (7)°. The S—S bond has a length of 2.061 (2) Å. In the crystal, hydrogen-bonding interactions and π–π stacking [centroid–centroid distance = 3.927 (2) Å] contacts link the molecules into a three-dimensional network.
Keywords: crystal structure; 1,2-dithiol-3-one derivatives; organic sulfur compounds; heterocyclic compounds.
CCDC reference: 1512930
Structure description
The title compound, C9H6ClONS2, is a derivative of 1,2-dithiole-3-one, a family of bioactive compounds (He et al., 2004). It crystallizes from mixture of ethanol and dichloromethane in the monoclinic P21/n (Fig. 1). The molecule is composed of two rings with a dihedral angle of 51.9 (7)° between them. The length of the S—S bond is 2.061 (2) Å and the angles C9—N8—C3, C3—S2—S1, S2—S1—C5 and C5—C4—C3 are 126.2 (4), 94.5 (2), 96.8 (2) and 120.5 (4)°, respectively.
In the crystal (Figs. 2 and 3), the three-dimensional molecular packing is sustained by hydrogen-bonding interactions (C10—H101⋯O6i, N8—H81⋯O6ii with H⋯A lengths of 2.55 and 1.99 Å, respectively; Table 1) and parallel-displaced π–π aromatic-stacking [centroid–centroid distance = 3.927 (2) Å] contacts between successive molecules in the [100] direction.
Synthesis and crystallization
To a methanol solution (50 ml) of 4,5-dichloro-1,2-dithiol-3-one (C3Cl2OS2, 1 g) and NaHCO3 (0.5 g), 0.6 g of aniline was added. The mixture was stirred for 20 h at room temperature. Then, 100 ml of distilled water was added, and the formed precipitate was filtered and washed 3 times with distilled water and dried. The product was crystallized in an ethyl acetate solution in 80% yield. The recrystallization process was performed from a 1:1 mixture of ethanol and dichloromethane solution.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1512930
https://doi.org/10.1107/S2414314616017363/bt4031sup1.cif
contains datablocks global, New_Global_Publ_Block, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616017363/bt4031Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C9H6ClNOS2 | F(000) = 496 |
Mr = 243.74 | Dx = 1.630 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2296 reflections |
a = 3.9268 (6) Å | θ = 3.6–29.1° |
b = 20.752 (3) Å | µ = 0.77 mm−1 |
c = 12.3431 (19) Å | T = 150 K |
β = 99.182 (14)° | Needle, light yellow |
V = 992.9 (3) Å3 | 0.38 × 0.14 × 0.09 mm |
Z = 4 |
Rigaku Xcalibur Atlas Gemini ultra diffractometer | 2403 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 1929 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 10.4685 pixels mm-1 | θmax = 29.6°, θmin = 3.4° |
ω scans | h = −5→5 |
Absorption correction: analytical [CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)] | k = 0→28 |
Tmin = 0.915, Tmax = 0.968 | l = 0→15 |
2403 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.155 | Method, part 1, Chebychev polynomial, (Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.173E + 04 0.271E + 04 0.145E + 04 406. |
S = 1.01 | (Δ/σ)max = 0.001 |
2393 reflections | Δρmax = 0.79 e Å−3 |
131 parameters | Δρmin = −1.02 e Å−3 |
3 restraints |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K. Absorption correction: CrysAlisPro 1.171.38.43 (Rigaku OD, 2015) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark and Reid (1995). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Refinement. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 and N—H in the range 0.86–0.89?Å) and Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom, after which the positions were refined with riding constraints (Cooper et al., 2010). The hydrogen atom bonded to N was refined with a restraint on the bond length [N8—H81 = 0.82?(2)?Å]. The bond angles C3—N8—H81 and C9—N8—H81 were restrained to be equal with an e.s.d. of 2.0) and the isotropic displacement parameter of H81 was restrained to 1.2Ueq of N8 with an e.s.d of 0.002. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.9772 (3) | 0.66331 (5) | 0.65293 (9) | 0.0245 | |
S2 | 0.8932 (3) | 0.60518 (5) | 0.51592 (9) | 0.0236 | |
C3 | 0.6605 (12) | 0.6630 (2) | 0.4331 (4) | 0.0220 | |
C4 | 0.6087 (12) | 0.7208 (2) | 0.4813 (4) | 0.0212 | |
C5 | 0.7448 (12) | 0.7319 (2) | 0.5925 (4) | 0.0216 | |
O6 | 0.7259 (10) | 0.78060 (16) | 0.6465 (3) | 0.0299 | |
Cl7 | 0.3850 (3) | 0.78231 (5) | 0.40834 (9) | 0.0294 | |
N8 | 0.5500 (11) | 0.64918 (18) | 0.3272 (3) | 0.0232 | |
C9 | 0.6041 (13) | 0.5905 (2) | 0.2735 (3) | 0.0218 | |
C10 | 0.7287 (13) | 0.5929 (2) | 0.1738 (4) | 0.0257 | |
C11 | 0.7676 (13) | 0.5366 (3) | 0.1182 (4) | 0.0288 | |
C12 | 0.6940 (14) | 0.4775 (2) | 0.1607 (4) | 0.0290 | |
C13 | 0.5678 (13) | 0.4752 (2) | 0.2596 (4) | 0.0274 | |
C14 | 0.5209 (13) | 0.5316 (2) | 0.3163 (4) | 0.0266 | |
H101 | 0.7838 | 0.6327 | 0.1459 | 0.0308* | |
H111 | 0.8502 | 0.5382 | 0.0512 | 0.0351* | |
H121 | 0.7281 | 0.4394 | 0.1235 | 0.0353* | |
H131 | 0.5129 | 0.4352 | 0.2879 | 0.0330* | |
H141 | 0.4324 | 0.5298 | 0.3825 | 0.0320* | |
H81 | 0.458 (14) | 0.6801 (12) | 0.2864 (18) | 0.0279* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0318 (6) | 0.0215 (5) | 0.0180 (5) | 0.0009 (5) | −0.0023 (4) | −0.0008 (4) |
S2 | 0.0313 (6) | 0.0198 (5) | 0.0184 (5) | 0.0034 (4) | −0.0001 (4) | −0.0008 (4) |
C3 | 0.025 (2) | 0.023 (2) | 0.0180 (19) | −0.0024 (18) | 0.0046 (16) | 0.0000 (16) |
C4 | 0.027 (2) | 0.0169 (19) | 0.020 (2) | 0.0009 (17) | 0.0025 (17) | 0.0003 (15) |
C5 | 0.027 (2) | 0.0182 (18) | 0.0195 (19) | −0.0046 (18) | 0.0039 (16) | 0.0024 (15) |
O6 | 0.043 (2) | 0.0218 (16) | 0.0222 (16) | 0.0002 (15) | −0.0040 (15) | −0.0048 (12) |
Cl7 | 0.0421 (7) | 0.0216 (5) | 0.0231 (5) | 0.0071 (5) | 0.0003 (5) | 0.0029 (4) |
N8 | 0.036 (2) | 0.0176 (16) | 0.0144 (16) | 0.0023 (16) | −0.0012 (15) | −0.0022 (13) |
C9 | 0.031 (2) | 0.0161 (18) | 0.0167 (19) | −0.0006 (18) | −0.0023 (16) | −0.0028 (15) |
C10 | 0.031 (2) | 0.025 (2) | 0.0195 (19) | −0.0011 (19) | −0.0005 (17) | −0.0004 (17) |
C11 | 0.030 (2) | 0.036 (3) | 0.020 (2) | 0.003 (2) | 0.0036 (17) | −0.0052 (19) |
C12 | 0.033 (2) | 0.023 (2) | 0.029 (2) | 0.003 (2) | −0.0006 (19) | −0.0103 (18) |
C13 | 0.033 (2) | 0.023 (2) | 0.025 (2) | 0.004 (2) | −0.0014 (18) | −0.0012 (18) |
C14 | 0.032 (2) | 0.024 (2) | 0.022 (2) | −0.003 (2) | 0.0008 (18) | 0.0028 (17) |
S1—S2 | 2.0605 (15) | C9—C14 | 1.391 (6) |
S1—C5 | 1.789 (5) | C10—C11 | 1.376 (7) |
S2—C3 | 1.738 (5) | C10—H101 | 0.932 |
C3—C4 | 1.367 (6) | C11—C12 | 1.382 (7) |
C3—N8 | 1.342 (5) | C11—H111 | 0.936 |
C4—C5 | 1.410 (6) | C12—C13 | 1.390 (7) |
C4—Cl7 | 1.721 (4) | C12—H121 | 0.934 |
C5—O6 | 1.220 (5) | C13—C14 | 1.391 (6) |
N8—C9 | 1.417 (5) | C13—H131 | 0.940 |
N8—H81 | 0.859 (19) | C14—H141 | 0.939 |
C9—C10 | 1.396 (6) | ||
S2—S1—C5 | 96.84 (15) | C10—C9—C14 | 120.1 (4) |
S1—S2—C3 | 94.51 (16) | C9—C10—C11 | 119.5 (5) |
S2—C3—C4 | 116.8 (3) | C9—C10—H101 | 119.4 |
S2—C3—N8 | 118.9 (3) | C11—C10—H101 | 121.2 |
C4—C3—N8 | 124.3 (4) | C10—C11—C12 | 121.2 (5) |
C3—C4—C5 | 120.5 (4) | C10—C11—H111 | 119.4 |
C3—C4—Cl7 | 121.5 (3) | C12—C11—H111 | 119.4 |
C5—C4—Cl7 | 118.0 (3) | C11—C12—C13 | 119.3 (4) |
S1—C5—C4 | 111.4 (3) | C11—C12—H121 | 120.6 |
S1—C5—O6 | 120.2 (3) | C13—C12—H121 | 120.2 |
C4—C5—O6 | 128.4 (4) | C12—C13—C14 | 120.5 (5) |
C3—N8—C9 | 126.2 (4) | C12—C13—H131 | 119.4 |
C3—N8—H81 | 116.9 (14) | C14—C13—H131 | 120.1 |
C9—N8—H81 | 116.6 (14) | C9—C14—C13 | 119.4 (4) |
N8—C9—C10 | 118.8 (4) | C9—C14—H141 | 120.5 |
N8—C9—C14 | 121.0 (4) | C13—C14—H141 | 120.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H101···O6i | 0.93 | 2.50 | 3.320 (7) | 147 (1) |
N8—H81···O6ii | 0.86 | 1.99 | 2.794 (7) | 155 (2) |
Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) x−1/2, −y+3/2, z−1/2. |
Acknowledgements
We are grateful to The French National Center for Scientific Research (CNRS) for financial support.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
He, X., Reeve, A. M. E., Desai, U. R., Kellogg, G. E. & Reynolds, K. A. (2004). Antimicrob. Agents Chemother. 48, 3093–3102. Web of Science CrossRef PubMed CAS Google Scholar
Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag. Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Watkin, D. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.