organic compounds
4,5-Dichloro-3H-1,2-dithiol-3-one
aDepartment of Chemistry, University of Constantine, BP 325, Route de Ain El Bey, Constantine 25017, Algeria, and bC2P2 (CNRS-UMR 5265), COMS group, Lyon 1 University, ESCPE Lyon, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69626, France
*Correspondence e-mail: boukebbous.khaled@gmail.com
The crystallization from an ethyl acetate solution of the title compound, also known as dichloro-1,2-dithiacyclopentenone, C3Cl2OS2, leads to a monoclinic system with P21/n The molecule displays an almost planar geometry, with a torsion angle of −2.1 (1)° for the endocyclic C—C—S—S fragment. The S—S and C=O bond lengths are 2.0521 (8) and 1.212 (3) Å, respectively. The endocyclic S—C—C angle sustained by the carbonyl group, 110.94 (16)°, deviates from the expected value of 120° for an sp2-hybridized C atom. In the crystal, short S⋯S, S⋯Cl, S⋯O and Cl⋯Cl contacts are observed.
CCDC reference: 1517056
Structure description
The title compound belongs to a family of bioactive compounds (He et al., 2004). Its crystallization from an ethyl acetate solution leads to a monoclinic system with P21/n (Figs. 1 and 2). The molecule is almost planar, with torsion angles of −0.3 (3), 0.6 (3), −2.1 (1), −0.8 (2) and −0.6 (3)° for the Cl6—C5= C4—Cl7, Cl7—C4—C3=O8, C4—C3—S2—S1, C4=C5—S1—S2 and S1—C5=C4—C3 fragments, respectively. Bond lengths of 2.0521 (8), 1.728 (2), 1.785 (2), 1.696 (2), 1.707 (2), and 1.212 (3) Å, respectively, for the S1—S2, C5—S1, C3—S2, C5—Cl6, C4—Cl7 and C3=O8 bonds are observed; furthermore, values of 93.88 (8) and 97.60 (8)° for the C5—S1—S2 and S1—S2—C3 angles, respectively, are noted. The endocyclic angle at C3, 110.94 (16)°, deviates from the value of 120° expected for an sp2-hybridized carbon atom (C3=O8 bond); similarly, minor deviations (less than 2°) are observed for the angles S1—C5=C4 and C3—C4=C5 from the expected value of 120° for these sp2 C atoms (C4=C5 bond).
In the crystal, short S⋯S [3.5929 (11) Å], S⋯Cl [3.4162 and 3.5219 (11) Å], S⋯O [3.153 (2) and 3.140 (2) Å] and Cl⋯Cl [3.3390 (11) Å] contacts are observed (Fig. 3).
Synthesis and crystallization
A commercial sample (Matrix Scientific) of 4,5-dichloro-3H-1,2-dithiol-3-one was used. The crystallization was performed using an ethyl acetate solution with a slow evaporation process, affording suitable single crystals.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1517056
https://doi.org/10.1107/S2414314616018204/bh4018sup1.cif
contains datablocks global, New_Global_Publ_Block, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616018204/bh4018Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616018204/bh4018Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C3Cl2OS2 | F(000) = 368 |
Mr = 187.07 | Dx = 2.090 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1441 reflections |
a = 8.678 (2) Å | θ = 3.5–28.4° |
b = 7.9332 (14) Å | µ = 1.67 mm−1 |
c = 8.7340 (18) Å | T = 150 K |
β = 98.62 (2)° | Plate, light yellow |
V = 594.5 (2) Å3 | 0.51 × 0.19 × 0.15 mm |
Z = 4 |
Agilent Xcalibur, Atlas, Gemini ultra diffractometer | 1377 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 1228 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 10.4685 pixels mm-1 | θmax = 28.7°, θmin = 3.5° |
ω scans | h = −6→11 |
Absorption correction: analytical (CrysAlis PRO; Rigaku OD, 2015) | k = −10→10 |
Tmin = 0.603, Tmax = 0.822 | l = −11→11 |
2973 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | [weight] = 1/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are Chebychev coefficients and x = F /Fmax; w = [weight]*[1-(deltaF/6*sigmaF)2]2 Ai coefficient are: 0.248E + 04 0.417E + 04 0.267E + 04 0.120E + 04 299. |
wR(F2) = 0.094 | (Δ/σ)max = 0.0004321 |
S = 0.99 | Δρmax = 0.45 e Å−3 |
1373 reflections | Δρmin = −0.41 e Å−3 |
74 parameters | Extinction correction: Larson, Equation 22 |
0 restraints | Extinction coefficient: 17 (4) |
0 constraints |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat with a nominal stability of 0.1 K. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.65286 (6) | 0.53082 (7) | 0.38502 (6) | 0.0173 | |
S2 | 0.59380 (7) | 0.28367 (7) | 0.33822 (7) | 0.0182 | |
C3 | 0.4325 (2) | 0.3208 (3) | 0.1897 (2) | 0.0161 | |
C4 | 0.4052 (2) | 0.4996 (3) | 0.1666 (2) | 0.0145 | |
C5 | 0.5024 (2) | 0.6089 (3) | 0.2519 (2) | 0.0145 | |
Cl6 | 0.48670 (7) | 0.82139 (7) | 0.23385 (7) | 0.0207 | |
Cl7 | 0.25439 (6) | 0.56383 (7) | 0.03087 (6) | 0.0195 | |
O8 | 0.3614 (2) | 0.2041 (2) | 0.1230 (2) | 0.0232 |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0155 (3) | 0.0155 (3) | 0.0199 (3) | 0.00018 (18) | −0.0002 (2) | −0.00018 (19) |
S2 | 0.0196 (3) | 0.0133 (3) | 0.0210 (3) | 0.00319 (19) | 0.0008 (2) | 0.00174 (19) |
C3 | 0.0178 (10) | 0.0132 (10) | 0.0175 (10) | 0.0016 (8) | 0.0032 (8) | −0.0001 (8) |
C4 | 0.0151 (9) | 0.0133 (9) | 0.0149 (10) | 0.0020 (8) | 0.0018 (8) | −0.0007 (8) |
C5 | 0.0152 (9) | 0.0131 (10) | 0.0156 (10) | 0.0022 (7) | 0.0039 (8) | 0.0008 (8) |
Cl6 | 0.0220 (3) | 0.0111 (3) | 0.0280 (3) | −0.00152 (18) | 0.0007 (2) | −0.00077 (19) |
Cl7 | 0.0199 (3) | 0.0157 (3) | 0.0207 (3) | 0.00089 (19) | −0.0038 (2) | 0.00105 (19) |
O8 | 0.0283 (9) | 0.0126 (8) | 0.0270 (9) | −0.0034 (6) | −0.0018 (7) | −0.0025 (6) |
S1—S2 | 2.0521 (8) | C3—O8 | 1.212 (3) |
S1—C5 | 1.728 (2) | C4—C5 | 1.353 (3) |
S2—C3 | 1.785 (2) | C4—Cl7 | 1.707 (2) |
C3—C4 | 1.447 (3) | C5—Cl6 | 1.696 (2) |
S2—S1—C5 | 93.88 (8) | C3—C4—Cl7 | 118.83 (17) |
S1—S2—C3 | 97.60 (8) | C5—C4—Cl7 | 122.75 (18) |
S2—C3—C4 | 110.94 (16) | S1—C5—C4 | 119.11 (18) |
S2—C3—O8 | 120.71 (17) | S1—C5—Cl6 | 117.45 (13) |
C4—C3—O8 | 128.3 (2) | C4—C5—Cl6 | 123.43 (17) |
C3—C4—C5 | 118.4 (2) |
Acknowledgements
We are grateful to The Centre National de la Recherche Scientifique (CNRS, France) for the financial support.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
He, X., Reeve, A. M. E., Desai, U. R., Kellogg, G. E. & Reynolds, K. A. (2004). Antimicrob. Agents Chemother. 48, 3093–3102. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, Texas, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.