organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Oxo-2H-chromen-3-yl 4-tert-butyl­benzoate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët-Boigny de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire, and bLaboratoire de Chimie Moléculaire et de Matériaux, Equipe de Chimie Organique et de Phytochimie, Université Ouaga I Pr Joseph KI-ZERBO, 03 BP 7021, Ouagadougou, 03, Burkina Faso
*Correspondence e-mail: kamborene@gmail.com

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 14 September 2016; accepted 13 October 2016; online 28 October 2016)

In the title coumarin derivative, C20H18O4, the benzene ring of the benzoate group is oriented at a dihedral angle of 57.55 (9)° with respect to the planar chromene ring system [maximum deviation from plane is 0.027 (2) Å]. In the crystal, inversion-related mol­ecules are linked into dimers via C—H⋯O hydrogen bonds, generating R22(12) loops. The dimers are linked by further C—H⋯O hydrogen bonds forming layers, parallel to the bc plane, which are linked via C—H⋯π inter­actions, forming a three-dimensional framework

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Coumarins are bioactive substances of the benzo-α-pyrone family and are of great inter­est due to their pharmacological properties, showing anti­oxidant, anti­viral and anti-inflammatory effects, among others (Francisco et al., 2016[Francisco, J. M., Sergio, J. D., Miguel, A. D., Oscar, G., Norma, A. C. & Enrique, G. (2016). Int. J. Quantum Chem. pp. 663-669.]). In particular, the physiological, bacteriostatic and anti-tumor activities make these compounds attractive for backbone derivatization and screening as novel therapeutic agents (Jain et al.,2012[Jain, P. K. & Himanshu, J. (2012). J. Appl. Pharm. Sci. 2, 236-240.]). They possess a conjugated system with good charge-transport properties (Murray et al.,1982[Murray, R., Mendez, J. & Brown, S. (1982). In Chemistry and Biochemistry. Chichester, UK: John Wiley and Sons.]). Coumarins have a sweet odor, easily recognized by the scent of new-mown hay, and hence they have been used in perfumes since 1882. It is presumed to be produced by plants as a chemical defense to discourage predation. In another important application, coumarin dyes are extensively used as gain media in blue–green tunable organic dye lasers (Schäfer, 1990[Schäfer, F. P. (1990). Principles of dye laser operation, in Dye Lasers, edited by F. P. Schäfer, pp. 1-89. Berlin: Springer.]; Duarte & Hillman, 1990[Duarte, F. J. & Hillman, L. W. (1990). Editors. Dye Laser Principles. New York: Academic Press.]; Duarte, 2003[Duarte, F. J. (2003). In Tunable Laser Optics. New York: Elsevier-Academic.]). They are also used as the active medium in coherent OLED emitters (Duarte et al., 2005[Duarte, F. J., Liao, L. S. & Vaeth, K. M. (2005). Opt. Lett. 30, 3072-3074.]). As part of our ongoing studies in this area, we now describe the synthesis and the crystal structure of the title coumarin derivative which has a benzoate substituent at position 3 of the coumarin ring system (Fig. 1[link]). Our group has previously reported a number of related structures (Abou et al., 2011[Abou, A., Djandé, A., Sessouma, B., Saba, A. & Kakou-Yao, R. (2011). Acta Cryst. E67, o2269-o2270.], 2012a[Abou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012a). Acta Cryst. E68, o3438-o3439.],b[Abou, A., Sessouma, B., Djandé, A., Saba, A. & Kakou-Yao, R. (2012b). Acta Cryst. E68, o537-o538.], Abou et al., 2013[Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081-o1082.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the title compound, Fig. 1[link], the benzene ring is inclined to the coumarin ring by 57.55 (9)°. The bond lengths and angles in the title mol­ecule are similar to those observed for the 4-methyl­benzoate analogue, 2-oxo-2H-chromen-3-yl 4-methyl­benzoate (Matos et al., 2013[Matos, M. J., Uriarte, E., Santana, L. & Vilar, S. (2013). J. Mol. Struct. 1041, 144-150.]). There, however, the benzene ring is inclined to the coumarin ring by 79.64 (5)°.

In the crystal, mol­ecules are linked by pairs of C6—H6⋯O4ii hydrogen bonds, forming inversion dimers that generate [R_{2}^{2}](12) ring motifs (Table 1[link] and Fig. 2[link]). The dimers are linked by further C—H⋯O hydrogen bonds, forming layers parallel to the bc plane (Table 1[link]). The layers are linked via C—H⋯π inter­actions, forming a three-dimensional framework (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3i 0.96 (3) 2.52 (3) 3.433 (3) 158 (2)
C6—H6⋯O4ii 0.97 (3) 2.40 (3) 3.360 (3) 170 (2)
C16—H16⋯O3iii 0.98 (2) 2.57 (2) 3.495 (3) 157.1 (19)
C20—H20CCg3iv 1.02 (4) 2.91 (4) 3.892 (4) 162 (3)
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal packing of the title compound, showing the formation of [R_{2}^{2}](12) cyclic dimers. Dashed lines indicate hydrogen-bond contacts. H atoms not involved in hydrogen-bond inter­actions have been omitted for clarity. C—H⋯π inter­actions are shown as black lines. The green circles indicate ring centroids.

Synthesis and crystallization

Dried tri­ethyl­amine (3 mol) was add to a solution of 4-tert-butyl­benzoyl chloride (6.17 10 −3 mol) in dried tetra­hydro­furan (31 ml). While stirring vigorously, 6.17 10 −3 mol of chroman-2,3-dione was added in small portions over 30 min. The reaction mixture was then refluxed for 4 h and poured in a separatory funnel containing 40 ml of chloro­form. The solution was acidified with dilute hydro­chloric acid until the pH changed to 2–3. The organic layer was extracted, washed with water until neutral, dried over MgSO4 and the solvent removed in vacuo. The resulting precipitate (crude product) was filtered off with suction, washed with petroleum ether and dissolved in a minimum of chloro­form by heating under agitation. Hexane was added to this hot mixture until the formation of a new precipitate started, which dissolved in the resulting mixture upon heating. While cooling, colourless crystals of the title compound suitable for X-ray diffraction analysis were formed (yield of 84%, m.p. 413-410 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H18O4
Mr 322.34
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 22.8977 (5), 5.9947 (1), 24.0352 (7)
β (°) 93.297 (2)
V3) 3293.73 (13)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.36 × 0.16 × 0.03
 
Data collection
Diffractometer Agilent SuperNova Dual diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.668, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19994, 3005, 2740
Rint 0.031
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 1.12
No. of reflections 3005
No. of parameters 290
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.21, −0.19
Computer programs: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Oxo-2H-chromen-3-yl 4-tert-butylbenzoate top
Crystal data top
C20H18O4Dx = 1.300 Mg m3
Mr = 322.34Melting point: 413 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.8977 (5) ÅCell parameters from 11432 reflections
b = 5.9947 (1) Åθ = 5.2–68.2°
c = 24.0352 (7) ŵ = 0.09 mm1
β = 93.297 (2)°T = 298 K
V = 3293.73 (13) Å3Prism, colorless
Z = 80.36 × 0.16 × 0.03 mm
F(000) = 1360
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3005 independent reflections
Radiation source: sealed X-ray tube2740 reflections with I > 2σ(I)
Detector resolution: 5.3048 pixels mm-1Rint = 0.031
ω scansθmax = 25.4°, θmin = 1.7°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 2727
Tmin = 0.668, Tmax = 1.000k = 77
19994 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048All H-atom parameters refined
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0332P)2 + 4.6284P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.008
3005 reflectionsΔρmax = 0.21 e Å3
290 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H160.3272 (10)1.023 (4)0.2757 (10)0.062 (7)*
H50.2542 (10)0.138 (4)0.1680 (10)0.065 (7)*
H90.1764 (11)0.075 (5)0.1146 (11)0.070 (8)*
H130.4819 (12)0.528 (5)0.3157 (11)0.075 (8)*
H120.4071 (11)0.422 (5)0.2516 (10)0.070 (8)*
H150.3990 (11)1.118 (5)0.3411 (11)0.073 (8)*
H70.1090 (12)0.155 (5)0.0363 (12)0.084 (9)*
H60.1705 (12)0.474 (5)0.0253 (12)0.079 (9)*
H18B0.5169 (14)1.105 (5)0.4499 (13)0.098 (10)*
H18C0.4654 (15)1.217 (6)0.4040 (15)0.114 (12)*
H18A0.4507 (14)0.979 (6)0.4427 (13)0.098 (10)*
H19C0.5502 (14)0.619 (6)0.3749 (13)0.091 (11)*
H19B0.5623 (15)0.762 (5)0.4318 (13)0.100 (10)*
H20A0.5254 (15)1.161 (6)0.3205 (14)0.107 (12)*
H80.1130 (12)0.124 (5)0.0327 (11)0.084 (9)*
H20B0.5787 (14)1.082 (6)0.3666 (13)0.098 (10)*
H20C0.5607 (15)0.933 (6)0.3108 (15)0.115 (12)*
H19A0.5026 (19)0.623 (7)0.4250 (17)0.137 (16)*
O10.24340 (7)0.5617 (3)0.05360 (6)0.0546 (4)
O20.32331 (7)0.4732 (3)0.18668 (6)0.0531 (4)
O30.26552 (6)0.7562 (3)0.21178 (6)0.0538 (4)
C10.28335 (9)0.4315 (4)0.14183 (9)0.0478 (5)
C120.40656 (10)0.5701 (4)0.27018 (10)0.0533 (6)
C100.31100 (9)0.6565 (4)0.21793 (9)0.0459 (5)
O40.31340 (8)0.7596 (3)0.09731 (7)0.0700 (5)
C50.25118 (10)0.2475 (4)0.13885 (9)0.0489 (5)
C20.28268 (10)0.5978 (4)0.09770 (9)0.0515 (5)
C110.35955 (9)0.7120 (3)0.25861 (8)0.0434 (5)
C30.20823 (9)0.3749 (4)0.05008 (9)0.0469 (5)
C170.50185 (10)0.9101 (4)0.37556 (10)0.0537 (6)
C140.45086 (9)0.8370 (4)0.33559 (9)0.0459 (5)
C40.21134 (9)0.2126 (4)0.09126 (9)0.0471 (5)
C150.40346 (10)0.9760 (4)0.32324 (10)0.0528 (6)
C160.35827 (10)0.9159 (4)0.28567 (10)0.0503 (5)
C90.17480 (11)0.0272 (4)0.08422 (11)0.0591 (6)
C130.45114 (10)0.6337 (4)0.30808 (10)0.0555 (6)
C60.17062 (11)0.3582 (5)0.00291 (10)0.0571 (6)
C80.13727 (12)0.0079 (5)0.03776 (12)0.0682 (7)
C70.13535 (11)0.1724 (5)0.00266 (12)0.0652 (7)
C180.48124 (14)1.0693 (6)0.42020 (13)0.0742 (8)
C190.53159 (19)0.7113 (6)0.4051 (2)0.0958 (13)
C200.54615 (13)1.0336 (6)0.34139 (15)0.0732 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0616 (9)0.0500 (9)0.0516 (9)0.0052 (7)0.0018 (7)0.0076 (7)
O20.0572 (9)0.0480 (9)0.0528 (9)0.0049 (7)0.0071 (7)0.0049 (7)
O30.0465 (8)0.0524 (9)0.0619 (10)0.0016 (7)0.0013 (7)0.0021 (7)
C10.0519 (12)0.0466 (12)0.0446 (11)0.0039 (10)0.0007 (9)0.0020 (9)
C120.0625 (14)0.0410 (12)0.0557 (13)0.0067 (10)0.0031 (11)0.0024 (10)
C100.0505 (12)0.0408 (11)0.0466 (12)0.0021 (10)0.0045 (9)0.0047 (9)
O40.0749 (11)0.0620 (11)0.0725 (12)0.0237 (9)0.0005 (9)0.0102 (9)
C50.0602 (13)0.0407 (11)0.0462 (12)0.0026 (10)0.0064 (10)0.0009 (10)
C20.0534 (12)0.0484 (13)0.0529 (13)0.0040 (10)0.0044 (10)0.0019 (10)
C110.0452 (11)0.0396 (11)0.0457 (11)0.0010 (9)0.0047 (8)0.0044 (9)
C30.0464 (11)0.0445 (11)0.0501 (12)0.0021 (9)0.0060 (9)0.0032 (9)
C170.0504 (12)0.0490 (13)0.0610 (14)0.0030 (10)0.0041 (10)0.0006 (11)
C140.0457 (11)0.0420 (11)0.0501 (12)0.0020 (9)0.0033 (9)0.0045 (9)
C40.0499 (11)0.0430 (11)0.0490 (12)0.0024 (9)0.0087 (9)0.0037 (9)
C150.0519 (12)0.0396 (12)0.0664 (15)0.0014 (10)0.0011 (10)0.0061 (11)
C160.0453 (11)0.0447 (12)0.0605 (14)0.0063 (10)0.0010 (10)0.0017 (10)
C90.0669 (15)0.0502 (14)0.0609 (15)0.0073 (12)0.0108 (12)0.0036 (12)
C130.0538 (13)0.0480 (13)0.0637 (14)0.0134 (11)0.0056 (11)0.0006 (11)
C60.0578 (13)0.0611 (15)0.0522 (13)0.0074 (12)0.0001 (11)0.0006 (12)
C80.0622 (15)0.0628 (16)0.0797 (18)0.0136 (13)0.0050 (13)0.0163 (14)
C70.0539 (14)0.0739 (18)0.0670 (16)0.0014 (13)0.0040 (12)0.0140 (14)
C180.0690 (17)0.092 (2)0.0607 (17)0.0081 (17)0.0006 (14)0.0159 (16)
C190.095 (3)0.069 (2)0.116 (3)0.0023 (19)0.054 (2)0.009 (2)
C200.0577 (16)0.079 (2)0.084 (2)0.0149 (15)0.0134 (15)0.0106 (17)
Geometric parameters (Å, º) top
O1—C21.367 (3)C3—C41.387 (3)
O1—C31.379 (3)C3—C61.387 (3)
O2—C101.369 (3)C17—C191.527 (4)
O2—C11.396 (2)C17—C181.531 (4)
O3—C101.203 (2)C17—C201.532 (4)
C1—C51.326 (3)C17—C141.532 (3)
C1—C21.455 (3)C14—C151.387 (3)
C12—C131.382 (3)C14—C131.387 (3)
C12—C111.387 (3)C4—C91.396 (3)
C10—C111.476 (3)C15—C161.381 (3)
O4—C21.198 (3)C9—C81.374 (4)
C5—C41.437 (3)C6—C71.378 (4)
C11—C161.386 (3)C8—C71.383 (4)
C2—O1—C3122.13 (17)C19—C17—C18108.0 (3)
C10—O2—C1114.90 (16)C19—C17—C20109.6 (3)
C5—C1—O2121.9 (2)C18—C17—C20108.3 (2)
C5—C1—C2123.2 (2)C19—C17—C14111.8 (2)
O2—C1—C2114.77 (19)C18—C17—C14111.3 (2)
C13—C12—C11119.9 (2)C20—C17—C14107.8 (2)
O3—C10—O2122.38 (19)C15—C14—C13116.8 (2)
O3—C10—C11125.7 (2)C15—C14—C17121.4 (2)
O2—C10—C11111.92 (18)C13—C14—C17121.73 (19)
C1—C5—C4119.3 (2)C3—C4—C9117.8 (2)
O4—C2—O1118.8 (2)C3—C4—C5118.1 (2)
O4—C2—C1125.4 (2)C9—C4—C5124.1 (2)
O1—C2—C1115.80 (19)C16—C15—C14122.1 (2)
C16—C11—C12118.9 (2)C15—C16—C11120.1 (2)
C16—C11—C10118.31 (19)C8—C9—C4120.5 (3)
C12—C11—C10122.8 (2)C12—C13—C14122.2 (2)
O1—C3—C4121.33 (19)C7—C6—C3118.1 (2)
O1—C3—C6116.2 (2)C9—C8—C7120.3 (3)
C4—C3—C6122.5 (2)C6—C7—C8120.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.96 (3)2.52 (3)3.433 (3)158 (2)
C6—H6···O4ii0.97 (3)2.40 (3)3.360 (3)170 (2)
C16—H16···O3iii0.98 (2)2.57 (2)3.495 (3)157.1 (19)
C20—H20C···Cg3iv1.02 (4)2.91 (4)3.892 (4)162 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z+1/2.
 

Acknowledgements

The authors are grateful to the Spectropôle Service of the Faculty of Sciences and Techniques of Saint Jérôme, Marseille, France, for the use of the diffractometer.

References

First citationAbou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012a). Acta Cryst. E68, o3438–o3439.  CrossRef IUCr Journals Google Scholar
First citationAbou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081–o1082.  CrossRef IUCr Journals Google Scholar
First citationAbou, A., Djandé, A., Sessouma, B., Saba, A. & Kakou-Yao, R. (2011). Acta Cryst. E67, o2269–o2270.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAbou, A., Sessouma, B., Djandé, A., Saba, A. & Kakou-Yao, R. (2012b). Acta Cryst. E68, o537–o538.  CrossRef IUCr Journals Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationDuarte, F. J. (2003). In Tunable Laser Optics. New York: Elsevier-Academic.  Google Scholar
First citationDuarte, F. J. & Hillman, L. W. (1990). Editors. Dye Laser Principles. New York: Academic Press.  Google Scholar
First citationDuarte, F. J., Liao, L. S. & Vaeth, K. M. (2005). Opt. Lett. 30, 3072–3074.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrancisco, J. M., Sergio, J. D., Miguel, A. D., Oscar, G., Norma, A. C. & Enrique, G. (2016). Int. J. Quantum Chem. pp. 663–669.  Google Scholar
First citationJain, P. K. & Himanshu, J. (2012). J. Appl. Pharm. Sci. 2, 236–240.  Google Scholar
First citationMatos, M. J., Uriarte, E., Santana, L. & Vilar, S. (2013). J. Mol. Struct. 1041, 144–150.  CrossRef CAS Google Scholar
First citationMurray, R., Mendez, J. & Brown, S. (1982). In Chemistry and Biochemistry. Chichester, UK: John Wiley and Sons.  Google Scholar
First citationSchäfer, F. P. (1990). Principles of dye laser operation, in Dye Lasers, edited by F. P. Schäfer, pp. 1–89. Berlin: Springer.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds