organic compounds
2-Oxo-2H-chromen-3-yl 4-tert-butylbenzoate
aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët-Boigny de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire, and bLaboratoire de Chimie Moléculaire et de Matériaux, Equipe de Chimie Organique et de Phytochimie, Université Ouaga I Pr Joseph KI-ZERBO, 03 BP 7021, Ouagadougou, 03, Burkina Faso
*Correspondence e-mail: kamborene@gmail.com
In the title coumarin derivative, C20H18O4, the benzene ring of the benzoate group is oriented at a dihedral angle of 57.55 (9)° with respect to the planar chromene ring system [maximum deviation from plane is 0.027 (2) Å]. In the crystal, inversion-related molecules are linked into dimers via C—H⋯O hydrogen bonds, generating R22(12) loops. The dimers are linked by further C—H⋯O hydrogen bonds forming layers, parallel to the bc plane, which are linked via C—H⋯π interactions, forming a three-dimensional framework
Keywords: crystal structure; coumarin; lactones; α-pyrone.
CCDC reference: 1509735
Structure description
α-pyrone family and are of great interest due to their pharmacological properties, showing antioxidant, antiviral and anti-inflammatory effects, among others (Francisco et al., 2016). In particular, the physiological, bacteriostatic and anti-tumor activities make these compounds attractive for backbone derivatization and screening as novel therapeutic agents (Jain et al.,2012). They possess a with good charge-transport properties (Murray et al.,1982). have a sweet odor, easily recognized by the scent of new-mown hay, and hence they have been used in perfumes since 1882. It is presumed to be produced by plants as a chemical defense to discourage predation. In another important application, coumarin dyes are extensively used as gain media in blue–green tunable organic dye lasers (Schäfer, 1990; Duarte & Hillman, 1990; Duarte, 2003). They are also used as the active medium in coherent OLED emitters (Duarte et al., 2005). As part of our ongoing studies in this area, we now describe the synthesis and the of the title coumarin derivative which has a benzoate substituent at position 3 of the coumarin ring system (Fig. 1). Our group has previously reported a number of related structures (Abou et al., 2011, 2012a,b, Abou et al., 2013).
are bioactive substances of the benzo-In the title compound, Fig. 1, the benzene ring is inclined to the coumarin ring by 57.55 (9)°. The bond lengths and angles in the title molecule are similar to those observed for the 4-methylbenzoate analogue, 2-oxo-2H-chromen-3-yl 4-methylbenzoate (Matos et al., 2013). There, however, the benzene ring is inclined to the coumarin ring by 79.64 (5)°.
In the crystal, molecules are linked by pairs of C6—H6⋯O4ii hydrogen bonds, forming inversion dimers that generate (12) ring motifs (Table 1 and Fig. 2). The dimers are linked by further C—H⋯O hydrogen bonds, forming layers parallel to the bc plane (Table 1). The layers are linked via C—H⋯π interactions, forming a three-dimensional framework (Table 1).
Synthesis and crystallization
Dried triethylamine (3 mol) was add to a solution of 4-tert-butylbenzoyl chloride (6.17 10 −3 mol) in dried tetrahydrofuran (31 ml). While stirring vigorously, 6.17 10 −3 mol of chroman-2,3-dione was added in small portions over 30 min. The reaction mixture was then refluxed for 4 h and poured in a separatory funnel containing 40 ml of chloroform. The solution was acidified with dilute hydrochloric acid until the pH changed to 2–3. The organic layer was extracted, washed with water until neutral, dried over MgSO4 and the solvent removed in vacuo. The resulting precipitate (crude product) was filtered off with suction, washed with petroleum ether and dissolved in a minimum of chloroform by heating under agitation. Hexane was added to this hot mixture until the formation of a new precipitate started, which dissolved in the resulting mixture upon heating. While cooling, colourless crystals of the title compound suitable for X-ray were formed (yield of 84%, m.p. 413-410 K).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1509735
https://doi.org/10.1107/S2414314616016333/zp4009sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616016333/zp4009Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616016333/zp4009Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C20H18O4 | Dx = 1.300 Mg m−3 |
Mr = 322.34 | Melting point: 413 K |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 22.8977 (5) Å | Cell parameters from 11432 reflections |
b = 5.9947 (1) Å | θ = 5.2–68.2° |
c = 24.0352 (7) Å | µ = 0.09 mm−1 |
β = 93.297 (2)° | T = 298 K |
V = 3293.73 (13) Å3 | Prism, colorless |
Z = 8 | 0.36 × 0.16 × 0.03 mm |
F(000) = 1360 |
Agilent SuperNova Dual diffractometer with an Atlas detector | 3005 independent reflections |
Radiation source: sealed X-ray tube | 2740 reflections with I > 2σ(I) |
Detector resolution: 5.3048 pixels mm-1 | Rint = 0.031 |
ω scans | θmax = 25.4°, θmin = 1.7° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | h = −27→27 |
Tmin = 0.668, Tmax = 1.000 | k = −7→7 |
19994 measured reflections | l = −28→28 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | All H-atom parameters refined |
wR(F2) = 0.127 | w = 1/[σ2(Fo2) + (0.0332P)2 + 4.6284P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.008 |
3005 reflections | Δρmax = 0.21 e Å−3 |
290 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0015 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
H16 | 0.3272 (10) | 1.023 (4) | 0.2757 (10) | 0.062 (7)* | |
H5 | 0.2542 (10) | 0.138 (4) | 0.1680 (10) | 0.065 (7)* | |
H9 | 0.1764 (11) | −0.075 (5) | 0.1146 (11) | 0.070 (8)* | |
H13 | 0.4819 (12) | 0.528 (5) | 0.3157 (11) | 0.075 (8)* | |
H12 | 0.4071 (11) | 0.422 (5) | 0.2516 (10) | 0.070 (8)* | |
H15 | 0.3990 (11) | 1.118 (5) | 0.3411 (11) | 0.073 (8)* | |
H7 | 0.1090 (12) | 0.155 (5) | −0.0363 (12) | 0.084 (9)* | |
H6 | 0.1705 (12) | 0.474 (5) | −0.0253 (12) | 0.079 (9)* | |
H18B | 0.5169 (14) | 1.105 (5) | 0.4499 (13) | 0.098 (10)* | |
H18C | 0.4654 (15) | 1.217 (6) | 0.4040 (15) | 0.114 (12)* | |
H18A | 0.4507 (14) | 0.979 (6) | 0.4427 (13) | 0.098 (10)* | |
H19C | 0.5502 (14) | 0.619 (6) | 0.3749 (13) | 0.091 (11)* | |
H19B | 0.5623 (15) | 0.762 (5) | 0.4318 (13) | 0.100 (10)* | |
H20A | 0.5254 (15) | 1.161 (6) | 0.3205 (14) | 0.107 (12)* | |
H8 | 0.1130 (12) | −0.124 (5) | 0.0327 (11) | 0.084 (9)* | |
H20B | 0.5787 (14) | 1.082 (6) | 0.3666 (13) | 0.098 (10)* | |
H20C | 0.5607 (15) | 0.933 (6) | 0.3108 (15) | 0.115 (12)* | |
H19A | 0.5026 (19) | 0.623 (7) | 0.4250 (17) | 0.137 (16)* | |
O1 | 0.24340 (7) | 0.5617 (3) | 0.05360 (6) | 0.0546 (4) | |
O2 | 0.32331 (7) | 0.4732 (3) | 0.18668 (6) | 0.0531 (4) | |
O3 | 0.26552 (6) | 0.7562 (3) | 0.21178 (6) | 0.0538 (4) | |
C1 | 0.28335 (9) | 0.4315 (4) | 0.14183 (9) | 0.0478 (5) | |
C12 | 0.40656 (10) | 0.5701 (4) | 0.27018 (10) | 0.0533 (6) | |
C10 | 0.31100 (9) | 0.6565 (4) | 0.21793 (9) | 0.0459 (5) | |
O4 | 0.31340 (8) | 0.7596 (3) | 0.09731 (7) | 0.0700 (5) | |
C5 | 0.25118 (10) | 0.2475 (4) | 0.13885 (9) | 0.0489 (5) | |
C2 | 0.28268 (10) | 0.5978 (4) | 0.09770 (9) | 0.0515 (5) | |
C11 | 0.35955 (9) | 0.7120 (3) | 0.25861 (8) | 0.0434 (5) | |
C3 | 0.20823 (9) | 0.3749 (4) | 0.05008 (9) | 0.0469 (5) | |
C17 | 0.50185 (10) | 0.9101 (4) | 0.37556 (10) | 0.0537 (6) | |
C14 | 0.45086 (9) | 0.8370 (4) | 0.33559 (9) | 0.0459 (5) | |
C4 | 0.21134 (9) | 0.2126 (4) | 0.09126 (9) | 0.0471 (5) | |
C15 | 0.40346 (10) | 0.9760 (4) | 0.32324 (10) | 0.0528 (6) | |
C16 | 0.35827 (10) | 0.9159 (4) | 0.28567 (10) | 0.0503 (5) | |
C9 | 0.17480 (11) | 0.0272 (4) | 0.08422 (11) | 0.0591 (6) | |
C13 | 0.45114 (10) | 0.6337 (4) | 0.30808 (10) | 0.0555 (6) | |
C6 | 0.17062 (11) | 0.3582 (5) | 0.00291 (10) | 0.0571 (6) | |
C8 | 0.13727 (12) | 0.0079 (5) | 0.03776 (12) | 0.0682 (7) | |
C7 | 0.13535 (11) | 0.1724 (5) | −0.00266 (12) | 0.0652 (7) | |
C18 | 0.48124 (14) | 1.0693 (6) | 0.42020 (13) | 0.0742 (8) | |
C19 | 0.53159 (19) | 0.7113 (6) | 0.4051 (2) | 0.0958 (13) | |
C20 | 0.54615 (13) | 1.0336 (6) | 0.34139 (15) | 0.0732 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0616 (9) | 0.0500 (9) | 0.0516 (9) | −0.0052 (7) | −0.0018 (7) | 0.0076 (7) |
O2 | 0.0572 (9) | 0.0480 (9) | 0.0528 (9) | 0.0049 (7) | −0.0071 (7) | −0.0049 (7) |
O3 | 0.0465 (8) | 0.0524 (9) | 0.0619 (10) | 0.0016 (7) | −0.0013 (7) | −0.0021 (7) |
C1 | 0.0519 (12) | 0.0466 (12) | 0.0446 (11) | 0.0039 (10) | 0.0007 (9) | −0.0020 (9) |
C12 | 0.0625 (14) | 0.0410 (12) | 0.0557 (13) | 0.0067 (10) | −0.0031 (11) | −0.0024 (10) |
C10 | 0.0505 (12) | 0.0408 (11) | 0.0466 (12) | −0.0021 (10) | 0.0045 (9) | 0.0047 (9) |
O4 | 0.0749 (11) | 0.0620 (11) | 0.0725 (12) | −0.0237 (9) | −0.0005 (9) | 0.0102 (9) |
C5 | 0.0602 (13) | 0.0407 (11) | 0.0462 (12) | 0.0026 (10) | 0.0064 (10) | 0.0009 (10) |
C2 | 0.0534 (12) | 0.0484 (13) | 0.0529 (13) | −0.0040 (10) | 0.0044 (10) | 0.0019 (10) |
C11 | 0.0452 (11) | 0.0396 (11) | 0.0457 (11) | −0.0010 (9) | 0.0047 (8) | 0.0044 (9) |
C3 | 0.0464 (11) | 0.0445 (11) | 0.0501 (12) | 0.0021 (9) | 0.0060 (9) | −0.0032 (9) |
C17 | 0.0504 (12) | 0.0490 (13) | 0.0610 (14) | −0.0030 (10) | −0.0041 (10) | 0.0006 (11) |
C14 | 0.0457 (11) | 0.0420 (11) | 0.0501 (12) | −0.0020 (9) | 0.0033 (9) | 0.0045 (9) |
C4 | 0.0499 (11) | 0.0430 (11) | 0.0490 (12) | 0.0024 (9) | 0.0087 (9) | −0.0037 (9) |
C15 | 0.0519 (12) | 0.0396 (12) | 0.0664 (15) | 0.0014 (10) | −0.0011 (10) | −0.0061 (11) |
C16 | 0.0453 (11) | 0.0447 (12) | 0.0605 (14) | 0.0063 (10) | 0.0010 (10) | −0.0017 (10) |
C9 | 0.0669 (15) | 0.0502 (14) | 0.0609 (15) | −0.0073 (12) | 0.0108 (12) | −0.0036 (12) |
C13 | 0.0538 (13) | 0.0480 (13) | 0.0637 (14) | 0.0134 (11) | −0.0056 (11) | −0.0006 (11) |
C6 | 0.0578 (13) | 0.0611 (15) | 0.0522 (13) | 0.0074 (12) | 0.0001 (11) | −0.0006 (12) |
C8 | 0.0622 (15) | 0.0628 (16) | 0.0797 (18) | −0.0136 (13) | 0.0050 (13) | −0.0163 (14) |
C7 | 0.0539 (14) | 0.0739 (18) | 0.0670 (16) | 0.0014 (13) | −0.0040 (12) | −0.0140 (14) |
C18 | 0.0690 (17) | 0.092 (2) | 0.0607 (17) | −0.0081 (17) | 0.0006 (14) | −0.0159 (16) |
C19 | 0.095 (3) | 0.069 (2) | 0.116 (3) | −0.0023 (19) | −0.054 (2) | 0.009 (2) |
C20 | 0.0577 (16) | 0.079 (2) | 0.084 (2) | −0.0149 (15) | 0.0134 (15) | −0.0106 (17) |
O1—C2 | 1.367 (3) | C3—C4 | 1.387 (3) |
O1—C3 | 1.379 (3) | C3—C6 | 1.387 (3) |
O2—C10 | 1.369 (3) | C17—C19 | 1.527 (4) |
O2—C1 | 1.396 (2) | C17—C18 | 1.531 (4) |
O3—C10 | 1.203 (2) | C17—C20 | 1.532 (4) |
C1—C5 | 1.326 (3) | C17—C14 | 1.532 (3) |
C1—C2 | 1.455 (3) | C14—C15 | 1.387 (3) |
C12—C13 | 1.382 (3) | C14—C13 | 1.387 (3) |
C12—C11 | 1.387 (3) | C4—C9 | 1.396 (3) |
C10—C11 | 1.476 (3) | C15—C16 | 1.381 (3) |
O4—C2 | 1.198 (3) | C9—C8 | 1.374 (4) |
C5—C4 | 1.437 (3) | C6—C7 | 1.378 (4) |
C11—C16 | 1.386 (3) | C8—C7 | 1.383 (4) |
C2—O1—C3 | 122.13 (17) | C19—C17—C18 | 108.0 (3) |
C10—O2—C1 | 114.90 (16) | C19—C17—C20 | 109.6 (3) |
C5—C1—O2 | 121.9 (2) | C18—C17—C20 | 108.3 (2) |
C5—C1—C2 | 123.2 (2) | C19—C17—C14 | 111.8 (2) |
O2—C1—C2 | 114.77 (19) | C18—C17—C14 | 111.3 (2) |
C13—C12—C11 | 119.9 (2) | C20—C17—C14 | 107.8 (2) |
O3—C10—O2 | 122.38 (19) | C15—C14—C13 | 116.8 (2) |
O3—C10—C11 | 125.7 (2) | C15—C14—C17 | 121.4 (2) |
O2—C10—C11 | 111.92 (18) | C13—C14—C17 | 121.73 (19) |
C1—C5—C4 | 119.3 (2) | C3—C4—C9 | 117.8 (2) |
O4—C2—O1 | 118.8 (2) | C3—C4—C5 | 118.1 (2) |
O4—C2—C1 | 125.4 (2) | C9—C4—C5 | 124.1 (2) |
O1—C2—C1 | 115.80 (19) | C16—C15—C14 | 122.1 (2) |
C16—C11—C12 | 118.9 (2) | C15—C16—C11 | 120.1 (2) |
C16—C11—C10 | 118.31 (19) | C8—C9—C4 | 120.5 (3) |
C12—C11—C10 | 122.8 (2) | C12—C13—C14 | 122.2 (2) |
O1—C3—C4 | 121.33 (19) | C7—C6—C3 | 118.1 (2) |
O1—C3—C6 | 116.2 (2) | C9—C8—C7 | 120.3 (3) |
C4—C3—C6 | 122.5 (2) | C6—C7—C8 | 120.9 (2) |
Cg3 is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O3i | 0.96 (3) | 2.52 (3) | 3.433 (3) | 158 (2) |
C6—H6···O4ii | 0.97 (3) | 2.40 (3) | 3.360 (3) | 170 (2) |
C16—H16···O3iii | 0.98 (2) | 2.57 (2) | 3.495 (3) | 157.1 (19) |
C20—H20C···Cg3iv | 1.02 (4) | 2.91 (4) | 3.892 (4) | 162 (3) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, −y+3/2, −z; (iii) −x+1/2, y+1/2, −z+1/2; (iv) −x+1, y, −z+1/2. |
Acknowledgements
The authors are grateful to the Spectropôle Service of the Faculty of Sciences and Techniques of Saint Jérôme, Marseille, France, for the use of the diffractometer.
References
Abou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012a). Acta Cryst. E68, o3438–o3439. CrossRef IUCr Journals Google Scholar
Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081–o1082. CrossRef IUCr Journals Google Scholar
Abou, A., Djandé, A., Sessouma, B., Saba, A. & Kakou-Yao, R. (2011). Acta Cryst. E67, o2269–o2270. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Abou, A., Sessouma, B., Djandé, A., Saba, A. & Kakou-Yao, R. (2012b). Acta Cryst. E68, o537–o538. CrossRef IUCr Journals Google Scholar
Agilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA. Google Scholar
Duarte, F. J. (2003). In Tunable Laser Optics. New York: Elsevier-Academic. Google Scholar
Duarte, F. J. & Hillman, L. W. (1990). Editors. Dye Laser Principles. New York: Academic Press. Google Scholar
Duarte, F. J., Liao, L. S. & Vaeth, K. M. (2005). Opt. Lett. 30, 3072–3074. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Francisco, J. M., Sergio, J. D., Miguel, A. D., Oscar, G., Norma, A. C. & Enrique, G. (2016). Int. J. Quantum Chem. pp. 663–669. Google Scholar
Jain, P. K. & Himanshu, J. (2012). J. Appl. Pharm. Sci. 2, 236–240. Google Scholar
Matos, M. J., Uriarte, E., Santana, L. & Vilar, S. (2013). J. Mol. Struct. 1041, 144–150. CrossRef CAS Google Scholar
Murray, R., Mendez, J. & Brown, S. (1982). In Chemistry and Biochemistry. Chichester, UK: John Wiley and Sons. Google Scholar
Schäfer, F. P. (1990). Principles of dye laser operation, in Dye Lasers, edited by F. P. Schäfer, pp. 1–89. Berlin: Springer. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.