organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 4,6-di­methyl-3-oxo-2-phenyl-3,7-di­hydro-2H-pyrazolo­[3,4-b]pyridine-5-carboxyl­ate monohydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique et Analytique, University Sultan Moulay Slimane, Faculty of Science and Technology, BP 523, Beni-Mellal, Morocco, bUniv. Lille, CNRS, Centrale Lille, Ecole Nationale-Supérieure de Chimie de Lille (ENSCL), Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille, France, and cLaboratoire de Spectro-Chimie Appliqué et Environnement, University Sultan Moulay Slimane, Faculty of Science and Technology, BP 523, Beni-Mellal, Morocco
*Correspondence e-mail: s.akhramez@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 5 October 2016; accepted 12 October 2016; online 14 October 2016)

In the title compound, C17H17N3O3·H2O, the dihedral angle between the 4,6-dimethyl-pyrazolo­[3,4-b]pyridine-3-one unit [maximum deviation = 0.048 (2) Å] and the phenyl ring is 5.1 (1)°. The structure is characterized by disorder of the carboxyl­ate O atoms, which are split into two parts with a major component of 0.898 (4). In the crystal, the organic mol­ecules and lattice water mol­ecules are linked via O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds. The mol­ecules are also linked by C—H⋯π and weak offset ππ stacking inter­actions, forming sheets parallel to (001).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The number of substituted pyrazolo­[3,4-b]pyridines has increased in organic and pharmaceutical chemistry. These heterocyclic systems are found in a number of mol­ecules possessing biological and pharmacological activities such as anti­microbial (Raviraj et al., 2013[Raviraj, B. D., Bhupendra, S. R., Someshwar, V. D. & Madhukar, N. J. (2013). Indo Amer. J. Pharm. Res. 3, 7045-7054.]), anti-inflammatory (Fong & Heymsfield, 2009[Fong, T. M. & Heymsfield, S. B. (2009). Int. J. Obes. Relat. Metab. Disord. 33, 947-955.]) and anti­viral (Bernardino et al., 2007[Bernardino, A. M. R., de Azevedo, A. R., Pinheiro, L. C. da S., Borges, J. C., Carvalho, V. L., Miranda, M. D., de Meneses, M. D. F., Nascimento, M., Ferreira, D., Rebello, M. A., da Silva, V. A. G. G. & de Frugulhetti, I. C. P. P. (2007). Med. Chem. Res. 16, 352-369.]). Besides their pharmacological properties, pyrazolo­[3,4-b]pyridines also exhibit corrosion inhibition properties (Gupta et al., 2015[Gupta, S. L., Dandia, A., Sing, P. & Quraishi, M. A. (2015). J. Mater. Environ. Sci. 6, 168-177.]). As part of our research on the preparation of new pyrazolo­[3,4-b]pyridine-3-ones (Fadel et al., 2011[Fadel, S., Hamri, S., Hajbi, Y., Suzenet, F., Hafid, A., Rakib, E., Khouili, M., Maria, D. & Guillaumet, G. (2011). ARKIVOC, (ii), 240-251.]), the title compound was isolated and its crystal structure was determined by X-ray diffraction.

The mol­ecular structure is shown in Fig. 1[link]. The dihedral angle between the 4,6-dimethyl-pyrazolo­[3,4-b]pyridine-3-one unit [maximum deviation = 0.048 (2) Å] and the phenyl ring is 5.1 (1)°. In the crystal, the components are linked through O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]). The cohesion of the crystal structure is enhanced by three ππ stacking inter­actions between the rings, Fig. 3[link], with centroid–centroid distances in the range 3.671 (2) to 3.784 (2) Å, forming mol­ecular layers along the c-axis direction. These sheets are linked together by C17—H17Aπ inter­actions (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O4i 0.86 1.86 2.718 (3) 177
O4—H1W⋯N2ii 0.86 (5) 2.07 (5) 2.899 (3) 164 (5)
O4—H2W⋯O1 0.90 (5) 1.84 (5) 2.739 (3) 172 (4)
C17—H17ACg3iii 0.96 2.79 3.717 (4) 163
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y, -z+1; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecule of the title compound, showing displacement ellipsoids drawn at the 30% probability level. The O—H⋯N hydrogen bond (see Table 1[link]) is shown as a dashed line. Only atoms of the major component of the disordered carboxyl­ate group have been included.
[Figure 2]
Figure 2
A partial view of the crystal packing of the title compound. O—H⋯O and O—H⋯N hydrogen bonds are shown as red dashed lines and N—H⋯O hydrogen bonds are shown as blue dashed lines while green dashed lines indicate the C—H⋯π contacts. Atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
Stacking inter­actions. Cg1, Cg2 and Cg3 are the centroids of the N1/N2/C1/C2/C6, N3/C2/C3/C4/C5/C6 and C7–C12 rings, respectively, with centroids shown as colored spheres and CgCg contacts drawn as green dashed lines.

Synthesis and crystallization

A solution of 3-amino-1-phenyl-1H-pyrazol-5(4H)-one (875 mg, 5 mmol) and ethyl aceto­acetate (3,19 ml, 25 mmol) was refluxed in a sand bath (180–185° C) for 6 h. The reaction mixture was left overnight at room temperature. The grey crystals formed were collected by filtration and washed with diethyl ether. The dried orange crystals were obtained with 42% yield and melting point around 534 K.

1H NMR (300 MHz, CDCl3, δ p.p.m.): 1.39 (3H, H17), 2.28 (3H, H14), 2.77 (3H, H13), 4.40 (2H, H16), 7.21 (1H, H10), 7.40 (2H, H9 and H11), 7.85 (2H, H8 and H12);

13C NMR (75 MHz, CDCl3, δ p.p.m.): 14.56 (CH3), 22.16 (C13, C14), 61.73 (C16), 108.99 (C2, C4), 122.30 (C10), 125.72 (C9, C11), 129.12 (C9, C11), 137.40 (C7), 150.92 (C3), 153.73 (C6), 157.34 (C5), 159.16 (C15), 167.30 (C1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The reflection ([\overline{3}]33) affected by the beam-stop was removed during refinement. The O atoms of the carboxyl­ate group are disordered over two sets of sites, with a refined occupancy ratio of 0.898 (4):0.102 (4).

Table 2
Experimental details

Crystal data
Chemical formula C17H17N3O3·H2O
Mr 329.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 10.5321 (15), 18.794 (3), 9.0491 (12)
β (°) 113.903 (5)
V3) 1637.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.32 × 0.24 × 0.15
 
Data collection
Diffractometer Bruker DUO APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.696, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15373, 2879, 1709
Rint 0.056
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.166, 0.96
No. of reflections 2879
No. of parameters 235
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg et al., 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg et al., 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Ethyl 4,6-dimethyl-3-oxo-2-phenyl-3,7-dihydro-2H-pyrazolo[3,4-b]pyridine-5-carboxylate monohydrate top
Crystal data top
C17H17N3O3·H2OF(000) = 696
Mr = 329.35Dx = 1.336 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5321 (15) ÅCell parameters from 2879 reflections
b = 18.794 (3) Åθ = 2.1–25.0°
c = 9.0491 (12) ŵ = 0.10 mm1
β = 113.903 (5)°T = 293 K
V = 1637.6 (4) Å3Block, orange
Z = 40.32 × 0.24 × 0.15 mm
Data collection top
Bruker DUO APEXII CCD
diffractometer
1709 reflections with I > 2σ(I)
φ and ω scansRint = 0.056
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 25.0°, θmin = 2.1°
Tmin = 0.696, Tmax = 0.746h = 1211
15373 measured reflectionsk = 2222
2879 independent reflectionsl = 1010
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.0837P)2 + 0.5493P]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
2879 reflectionsΔρmax = 0.26 e Å3
235 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2341 (2)0.04229 (12)0.5100 (2)0.0593 (6)
O20.1524 (3)0.14716 (15)0.0298 (4)0.0671 (8)0.898 (4)
O30.0117 (3)0.21966 (17)0.0281 (4)0.1033 (12)0.898 (4)
O2A0.1029 (19)0.1830 (15)0.092 (3)0.0671 (8)0.102 (4)
O3A0.121 (2)0.1625 (14)0.133 (2)0.1033 (12)0.102 (4)
N10.3718 (2)0.06247 (12)0.3654 (3)0.0446 (6)
N20.3789 (2)0.04097 (13)0.2189 (3)0.0453 (6)
C10.2639 (3)0.03131 (16)0.3926 (3)0.0451 (7)
C20.1975 (3)0.01464 (15)0.2528 (3)0.0419 (7)
C30.0919 (3)0.06363 (15)0.2102 (3)0.0455 (7)
C40.0624 (3)0.10151 (16)0.0640 (3)0.0476 (7)
C50.1344 (3)0.08678 (16)0.0323 (3)0.0481 (7)
C60.2745 (3)0.00291 (14)0.1589 (3)0.0408 (7)
C70.4740 (3)0.11041 (15)0.4645 (3)0.0443 (7)
C150.0376 (4)0.1618 (2)0.0152 (4)0.0646 (9)
N30.2371 (2)0.03840 (12)0.0153 (3)0.0458 (6)
H3N0.28010.02950.04560.055*
C80.5713 (3)0.13804 (16)0.4129 (4)0.0508 (8)
H80.56770.12590.31170.061*
C90.6732 (3)0.18347 (16)0.5113 (4)0.0556 (8)
H90.73810.20150.47580.067*
C100.6803 (3)0.20245 (17)0.6610 (4)0.0616 (9)
H100.74980.23280.72710.074*
C110.5833 (4)0.17590 (17)0.7113 (4)0.0634 (9)
H110.58690.18890.81210.076*
C120.4808 (3)0.13044 (16)0.6156 (4)0.0562 (8)
H120.41580.11300.65180.067*
C130.0193 (3)0.07762 (19)0.3210 (4)0.0654 (10)
H13A0.01380.12800.33510.098*
H13B0.07060.05580.42410.098*
H13C0.07270.05800.27440.098*
C140.1036 (4)0.12011 (18)0.1943 (4)0.0657 (9)
H14A0.11710.17060.18170.099*
H14B0.00920.11030.26590.099*
H14C0.16500.10070.23860.099*
C160.2515 (4)0.2055 (2)0.0019 (6)0.0954 (14)
H16A0.20260.24970.04440.115*
H16B0.30650.21150.11300.115*
C170.3398 (5)0.1878 (2)0.0831 (6)0.1029 (15)
H17A0.40870.22420.06290.154*
H17B0.28490.18420.19720.154*
H17C0.38470.14310.04320.154*
O40.3690 (3)0.00542 (15)0.8210 (3)0.0673 (7)
H1W0.443 (5)0.023 (3)0.819 (6)0.131 (19)*
H2W0.317 (4)0.010 (2)0.720 (6)0.114 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0515 (13)0.0909 (16)0.0426 (11)0.0058 (12)0.0263 (10)0.0118 (11)
O20.0455 (16)0.0638 (18)0.092 (2)0.0074 (14)0.0281 (15)0.0040 (15)
O30.088 (2)0.078 (2)0.167 (3)0.0230 (17)0.076 (2)0.048 (2)
O2A0.0455 (16)0.0638 (18)0.092 (2)0.0074 (14)0.0281 (15)0.0040 (15)
O3A0.088 (2)0.078 (2)0.167 (3)0.0230 (17)0.076 (2)0.048 (2)
N10.0414 (14)0.0569 (15)0.0391 (13)0.0032 (12)0.0202 (11)0.0044 (11)
N20.0426 (14)0.0588 (15)0.0386 (13)0.0019 (13)0.0208 (12)0.0017 (11)
C10.0382 (16)0.0599 (18)0.0377 (15)0.0039 (14)0.0160 (14)0.0036 (14)
C20.0345 (16)0.0557 (17)0.0366 (14)0.0047 (14)0.0155 (13)0.0040 (13)
C30.0386 (17)0.0561 (17)0.0436 (16)0.0014 (14)0.0183 (14)0.0029 (14)
C40.0374 (17)0.0568 (18)0.0478 (17)0.0009 (15)0.0164 (14)0.0026 (14)
C50.0372 (17)0.0579 (18)0.0460 (16)0.0027 (15)0.0136 (14)0.0017 (14)
C60.0392 (16)0.0506 (17)0.0333 (14)0.0037 (14)0.0154 (13)0.0025 (13)
C70.0437 (17)0.0467 (16)0.0410 (16)0.0011 (14)0.0156 (14)0.0019 (13)
C150.052 (2)0.078 (3)0.064 (2)0.011 (2)0.0243 (18)0.0137 (19)
N30.0430 (14)0.0613 (15)0.0387 (13)0.0014 (13)0.0221 (11)0.0008 (12)
C80.0470 (18)0.0544 (18)0.0496 (18)0.0001 (15)0.0183 (15)0.0016 (15)
C90.0482 (19)0.0523 (18)0.065 (2)0.0031 (16)0.0216 (17)0.0080 (16)
C100.062 (2)0.0532 (19)0.062 (2)0.0086 (17)0.0168 (18)0.0018 (16)
C110.079 (2)0.057 (2)0.0509 (19)0.0140 (19)0.0230 (18)0.0108 (16)
C120.067 (2)0.0563 (19)0.0494 (17)0.0076 (17)0.0274 (17)0.0025 (15)
C130.054 (2)0.092 (3)0.0580 (19)0.0108 (18)0.0308 (17)0.0053 (18)
C140.066 (2)0.077 (2)0.056 (2)0.0057 (18)0.0266 (18)0.0152 (17)
C160.070 (3)0.102 (3)0.125 (3)0.042 (2)0.051 (3)0.037 (3)
C170.107 (3)0.113 (3)0.112 (3)0.046 (3)0.068 (3)0.021 (3)
O40.0592 (16)0.102 (2)0.0534 (15)0.0104 (14)0.0353 (13)0.0105 (13)
Geometric parameters (Å, º) top
O1—C11.241 (3)C8—C91.378 (4)
O2—C151.299 (4)C8—H80.9300
O2—C161.464 (4)C9—C101.373 (4)
O3—C151.223 (4)C9—H90.9300
O2A—C151.23 (2)C10—C111.370 (4)
O2A—C161.504 (16)C10—H100.9300
O3A—C151.272 (18)C11—C121.374 (4)
N1—C11.386 (4)C11—H110.9300
N1—C71.412 (4)C12—H120.9300
N1—N21.417 (3)C13—H13A0.9600
N2—C61.303 (3)C13—H13B0.9600
C1—C21.455 (4)C13—H13C0.9600
C2—C31.373 (4)C14—H14A0.9600
C2—C61.411 (4)C14—H14B0.9600
C3—C41.421 (4)C14—H14C0.9600
C3—C131.511 (4)C16—C171.439 (5)
C4—C51.396 (4)C16—H16A0.9700
C4—C151.487 (4)C16—H16B0.9700
C5—N31.343 (4)C17—H17A0.9600
C5—C141.503 (4)C17—H17B0.9600
C6—N31.368 (3)C17—H17C0.9600
C7—C81.387 (4)O4—H1W0.86 (5)
C7—C121.392 (4)O4—H2W0.90 (5)
N3—H3N0.8600
C15—O2—C16116.8 (3)C10—C9—C8121.0 (3)
C15—O2A—C16118.7 (19)C10—C9—H9119.5
C1—N1—C7128.7 (2)C8—C9—H9119.5
C1—N1—N2113.8 (2)C11—C10—C9118.9 (3)
C7—N1—N2117.4 (2)C11—C10—H10120.6
C6—N2—N1102.4 (2)C9—C10—H10120.6
O1—C1—N1126.3 (3)C10—C11—C12121.2 (3)
O1—C1—C2130.1 (3)C10—C11—H11119.4
N1—C1—C2103.7 (2)C12—C11—H11119.4
C3—C2—C6122.2 (2)C11—C12—C7120.1 (3)
C3—C2—C1133.8 (2)C11—C12—H12119.9
C6—C2—C1103.9 (2)C7—C12—H12119.9
C2—C3—C4116.4 (2)C3—C13—H13A109.5
C2—C3—C13120.0 (3)C3—C13—H13B109.5
C4—C3—C13123.5 (3)H13A—C13—H13B109.5
C5—C4—C3120.9 (3)C3—C13—H13C109.5
C5—C4—C15117.7 (3)H13A—C13—H13C109.5
C3—C4—C15121.3 (3)H13B—C13—H13C109.5
N3—C5—C4120.3 (2)C5—C14—H14A109.5
N3—C5—C14115.0 (3)C5—C14—H14B109.5
C4—C5—C14124.7 (3)H14A—C14—H14B109.5
N2—C6—N3125.0 (2)C5—C14—H14C109.5
N2—C6—C2116.2 (2)H14A—C14—H14C109.5
N3—C6—C2118.7 (3)H14B—C14—H14C109.5
C8—C7—C12118.6 (3)C17—C16—O2107.5 (3)
C8—C7—N1120.2 (2)C17—C16—O2A113.7 (11)
C12—C7—N1121.3 (3)C17—C16—H16A110.2
O2A—C15—O3A107.0 (15)O2—C16—H16A110.2
O3—C15—O2124.0 (3)C17—C16—H16B110.2
O3—C15—C4123.4 (3)O2—C16—H16B110.2
O2A—C15—C4124.8 (11)H16A—C16—H16B108.5
O3A—C15—C4115.0 (13)C16—C17—H17A109.5
O2—C15—C4112.6 (3)C16—C17—H17B109.5
C5—N3—C6121.3 (2)H17A—C17—H17B109.5
C5—N3—H3N119.3C16—C17—H17C109.5
C6—N3—H3N119.3H17A—C17—H17C109.5
C9—C8—C7120.2 (3)H17B—C17—H17C109.5
C9—C8—H8119.9H1W—O4—H2W107 (4)
C7—C8—H8119.9
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3N···O4i0.861.862.718 (3)177
O4—H1W···N2ii0.86 (5)2.07 (5)2.899 (3)164 (5)
O4—H2W···O10.90 (5)1.84 (5)2.739 (3)172 (4)
C17—H17A···Cg3iii0.962.793.717 (4)163
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

X-Ray diffractometers are funded by Région NPDC, FEDER, CNRS and MESR.

References

First citationBernardino, A. M. R., de Azevedo, A. R., Pinheiro, L. C. da S., Borges, J. C., Carvalho, V. L., Miranda, M. D., de Meneses, M. D. F., Nascimento, M., Ferreira, D., Rebello, M. A., da Silva, V. A. G. G. & de Frugulhetti, I. C. P. P. (2007). Med. Chem. Res. 16, 352–369.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFadel, S., Hamri, S., Hajbi, Y., Suzenet, F., Hafid, A., Rakib, E., Khouili, M., Maria, D. & Guillaumet, G. (2011). ARKIVOC, (ii), 240–251.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFong, T. M. & Heymsfield, S. B. (2009). Int. J. Obes. Relat. Metab. Disord. 33, 947–955.  Web of Science CrossRef CAS Google Scholar
First citationGupta, S. L., Dandia, A., Sing, P. & Quraishi, M. A. (2015). J. Mater. Environ. Sci. 6, 168–177.  Google Scholar
First citationRaviraj, B. D., Bhupendra, S. R., Someshwar, V. D. & Madhukar, N. J. (2013). Indo Amer. J. Pharm. Res. 3, 7045–7054.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds