organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Diiso­propyl­ammonium 4-amino­benzene­sulfonate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bInstitut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Univ. Paris-Saclay, 1 av. de la Terrasse, F-91198 Gif-sur-Yvette Cedex, France, and cService Commun d'Analyse par Diffraction des Rayons X, Université de Bretagne Occidentale, 6 avenue Victor Le Gorgeu, CS 93837, F-29238 BREST cedex 3, France
*Correspondence e-mail: bouks89@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 August 2016; accepted 3 October 2016; online 7 October 2016)

The title mol­ecular salt, C6H16N+·C6H6NO3S, was synthesized from a neutralization reaction between sulfanilic acid and diiso­propyl­amine. The crystal structure consists of diiso­propyl­ammonium cations and 4-amino­benzene­sulfonate (sulfanilate) anions inter­acting through a series of N—H⋯O and C—H⋯O hydrogen bonds, leading to the formation of a three-dimensional network structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Sulfanilates of alkyl­ammonium cations, such as the sulfanilates of methyl­ammonium (Schreuer, 1999[Schreuer, J. (1999). Z. Kristallogr. New Cryst. Struct. 214, 317-318.]), guanidinium (Russell et al., 1994[Russell, V. A., Etter, M. C. & Ward, M. D. (1994). Chem. Mater. 6, 1206-1217.]), tri­ethyl­ammonium (Li et al., 2007[Li, J., Liang, Z.-P. & Guo, H.-M. (2007). Acta Cryst. E63, o2884.]) or tetra­methyl­ammonium (Wang et al., 2016[Wang, P., Zeng, H. & Wu, X. (2016). Z. Kristallogr. New Cryst. Struct. 231, 393-394.]) have been reported. As a continuation of our work on alkyl­ammonium salts (Sarr et al., 2012[Sarr, M., Boye, M. S., Diasse-Sarr, A., Grosjean, A. & Guionneau, P. (2012). Acta Cryst. E68, o3078.]), in order to study their inter­actions with metallic halides, we synthesized the title mol­ecular salt from a neutralization reaction between sulfanilic acid, the structure of which has been reported by Low & Glidewell (2002[Low, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o209-o211.]), and diiso­propyl­amine. Sulfanilic acid, a strong organic acid with pKa = 3.23, donates its sulfonic proton to diiso­propyl­amine to give the title organic salt, C6H16N+·C6H6NO3S. Its asymmetric unit comprises one diiso­propyl­ammonium cation and one sulfanilate anion (Fig. 1[link]). The protonation of diiso­propyl­amine leads to an irregular tetra­hedral arrangement around the ammonium atom N2, as reported in related structures (Sarr et al., 2012[Sarr, M., Boye, M. S., Diasse-Sarr, A., Grosjean, A. & Guionneau, P. (2012). Acta Cryst. E68, o3078.]; Reiss & Meyer, 2011[Reiss, G. J. & Meyer, M. K. (2011). Acta Cryst. E67, o2169.]). The bond angles around this atom fall within normal ranges: 117.08 (18)° for angle C10—N2—C7, while the C—N—H2N/M angles are smaller and vary from 106.0 (13) to 109 (2) °. The arrangement around the sulfonate atom S1 is distorted tetra­hedral, with the various O—S—C and O—S—O angles ranging between 106.82 (10)° for O1—S1—C1 to 112.51 (14)° for O2—S1—O1. In the SO3 group the three S—-O distances are slightly different, viz S1—O2 = 1.4201 (18) Å, S1—O3 = 1.4325 (19) Å and S1—O1 1.4446 (17) Å, due to their different roles in hydrogen bonding.

[Figure 1]
Figure 1
The structures of the mol­ecular entities in the title salt. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, the ions are connected through N—H⋯O hydrogen bonds (Table 1[link]). Atoms O1 and O2 of the sulfonate group are involved in rather strong N—H⋯O hydrogen bonding. Atom O1 acts as an acceptor of two hydrogen bonds N2—H2M⋯O1 and N2—H2N⋯O1i, forming a four-membered unit with inversion symmetry, enclosing an R42(8) ring motif (Table 1[link] and Fig. 2[link]). These units are self-assembled through further N—H⋯O hydrogen bonds involving atom O2 and the amino group of the sulfanilate anion (Fig. 3[link] and Table 1[link]), forming a three-dimensional network. The hydrogen-bonded assembly is consolidated by a weak N1—H1N⋯O3iii hydrogen bond and two C—H⋯O hydrogen bonds (Fig. 3[link] and Table 1[link]), again involving atom O3.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2M⋯O1 0.89 (2) 2.03 (2) 2.878 (3) 159 (2)
N2—H2N⋯O1i 0.88 (1) 2.11 (2) 2.922 (3) 152 (2)
N1—H1M⋯O2ii 0.84 (2) 2.21 (2) 3.013 (3) 160 (3)
N1—H1N⋯O2iii 0.84 (2) 2.57 (2) 3.316 (4) 149 (3)
N1—H1N⋯O3iii 0.84 (2) 2.67 (2) 3.441 (4) 153 (3)
C10—H10⋯O3iv 0.98 2.57 3.332 (3) 135
C12—H12B⋯O3i 0.96 2.58 3.468 (4) 155
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) x, y, z-1.
[Figure 2]
Figure 2
A view of the four-membered unit formed by N—H⋯O hydrogen bonds (dashed lines; see Table 1[link]), enclosing an R42(8) ring motif.
[Figure 3]
Figure 3
The crystal packing of the title mol­ecular salt, viewed approximately along the a axis. Hydrogen bonds (see Table 1[link]) are shown as dashed lines; for clarity, only H atoms involved in these inter­actions have been included.

Synthesis and crystallization

The title compound was obtained by addition of diiso­propyl­amine (7.000 g, 0.069 mol) to an aqueous solution of sulfanilic acid (11.870 g, 0.068 mol) in an 1:1 ratio. The yellow solution obtained was stirred for one h and then filtered. Colourless plate-like crystals of the title mol­ecular salt were obtained by slow evaporation of the filtrate after one week.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N-bound H atoms were located in difference Fourier maps and refined with distance and angle restraints: N—H and H⋯H distances involving atom N1 are N—H = 0.86 (2) Å and H⋯H = 1.49 (2) Å, and for atom N2 are N—H = 0.90 (2) Å and H⋯H = 1.45 (2) Å, with Uiso(H) = 1.2Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula C6H16N+·C6H6NO3S
Mr 274.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.1712 (4), 20.1515 (9), 9.1360 (4)
β (°) 105.806 (5)
V3) 1447.47 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.42 × 0.26 × 0.18
 
Data collection
Diffractometer Agilent Xcalibur Sapphire2
Absorption correction Analytical (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.952, 0.970
No. of measured, independent and observed [I > 2σ(I)] reflections 6311, 2963, 2340
Rint 0.035
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.136, 1.04
No. of reflections 2963
No. of parameters 179
No. of restraints 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.28
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Diisopropylammonium 4-aminobenzenesulfonate top
Crystal data top
C6H16N+·C6H6NO3SF(000) = 592
Mr = 274.38Dx = 1.259 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2619 reflections
a = 8.1712 (4) Åθ = 3.8–27.1°
b = 20.1515 (9) ŵ = 0.23 mm1
c = 9.1360 (4) ÅT = 296 K
β = 105.806 (5)°Fragment of big plate, colourless
V = 1447.47 (11) Å30.42 × 0.26 × 0.18 mm
Z = 4
Data collection top
Agilent Xcalibur Sapphire2
diffractometer
2963 independent reflections
Radiation source: Enhance (Mo) X-ray Source2340 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.3622 pixels mm-1θmax = 26.4°, θmin = 3.6°
ω scansh = 910
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2014)
k = 2425
Tmin = 0.952, Tmax = 0.970l = 1111
6311 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.5536P]
where P = (Fo2 + 2Fc2)/3
2963 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.34 e Å3
14 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8387 (2)0.15317 (10)0.7706 (2)0.0370 (4)
C20.8828 (3)0.20191 (11)0.8832 (2)0.0462 (5)
H20.80140.21790.92840.055*
C31.0462 (3)0.22647 (11)0.9277 (3)0.0527 (6)
H31.07380.2591.00270.063*
C41.1704 (3)0.20355 (11)0.8624 (3)0.0469 (5)
C51.1258 (3)0.15426 (11)0.7514 (2)0.0448 (5)
H51.20740.13770.70730.054*
C60.9619 (3)0.12987 (10)0.7063 (2)0.0415 (5)
H60.93420.09730.63150.05*
N11.3337 (3)0.22806 (13)0.9042 (3)0.0775 (8)
S10.62887 (6)0.12319 (3)0.71455 (6)0.04264 (19)
O10.6264 (2)0.06898 (9)0.6105 (2)0.0681 (5)
O20.5214 (2)0.17641 (10)0.6456 (3)0.1034 (9)
O30.5882 (3)0.09977 (13)0.8485 (2)0.0992 (8)
H1M1.362 (4)0.2562 (15)0.975 (3)0.119*
H1N1.405 (3)0.2074 (16)0.871 (4)0.119*
C70.2667 (3)0.09559 (11)0.2422 (3)0.0511 (6)
H70.27990.14230.21760.061*
C80.1624 (4)0.06106 (14)0.1017 (3)0.0700 (8)
H8A0.21880.06450.02250.105*
H8B0.05240.08160.06870.105*
H8C0.14940.01510.12410.105*
C90.1832 (4)0.09238 (17)0.3702 (3)0.0785 (9)
H9A0.16520.04680.39240.118*
H9B0.07590.11510.34070.118*
H9C0.25540.11320.4590.118*
C100.5643 (3)0.08053 (12)0.2043 (3)0.0547 (6)
H100.50490.07850.09570.066*
C110.6339 (4)0.14973 (14)0.2419 (4)0.0739 (8)
H11A0.69310.15230.3480.111*
H11B0.54190.1810.21910.111*
H11C0.7110.15990.18230.111*
C120.7029 (4)0.02934 (15)0.2389 (4)0.0865 (10)
H12A0.78220.03870.18090.13*
H12B0.65430.01380.21230.13*
H12C0.7610.03050.34540.13*
N20.4402 (2)0.06439 (9)0.2941 (2)0.0454 (4)
H2M0.489 (2)0.0764 (11)0.3896 (18)0.054*
H2N0.423 (2)0.0211 (7)0.292 (3)0.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0406 (10)0.0316 (10)0.0346 (10)0.0003 (8)0.0031 (8)0.0024 (8)
C20.0475 (12)0.0402 (11)0.0500 (12)0.0032 (10)0.0118 (10)0.0093 (9)
C30.0564 (13)0.0411 (12)0.0551 (13)0.0046 (10)0.0059 (11)0.0181 (10)
C40.0448 (12)0.0404 (11)0.0509 (12)0.0049 (10)0.0051 (10)0.0006 (10)
C50.0447 (12)0.0476 (12)0.0432 (11)0.0021 (10)0.0140 (9)0.0033 (9)
C60.0503 (12)0.0410 (11)0.0324 (10)0.0051 (9)0.0100 (9)0.0061 (8)
N10.0490 (13)0.0770 (18)0.103 (2)0.0183 (12)0.0153 (13)0.0326 (14)
S10.0397 (3)0.0396 (3)0.0442 (3)0.0028 (2)0.0039 (2)0.0011 (2)
O10.0552 (10)0.0690 (12)0.0768 (12)0.0175 (9)0.0123 (9)0.0323 (10)
O20.0505 (11)0.0571 (12)0.173 (2)0.0051 (9)0.0205 (13)0.0298 (14)
O30.0780 (14)0.162 (2)0.0608 (12)0.0538 (15)0.0235 (10)0.0010 (14)
C70.0507 (13)0.0405 (12)0.0561 (13)0.0019 (10)0.0041 (10)0.0012 (10)
C80.0728 (17)0.0691 (17)0.0521 (14)0.0021 (14)0.0102 (12)0.0000 (13)
C90.0555 (16)0.109 (2)0.0722 (18)0.0051 (16)0.0195 (13)0.0246 (18)
C100.0621 (14)0.0582 (14)0.0486 (13)0.0153 (12)0.0231 (11)0.0065 (11)
C110.085 (2)0.0542 (16)0.090 (2)0.0174 (15)0.0366 (17)0.0077 (14)
C120.078 (2)0.0658 (19)0.134 (3)0.0093 (16)0.060 (2)0.0197 (19)
N20.0478 (10)0.0454 (10)0.0415 (9)0.0075 (9)0.0096 (8)0.0018 (8)
Geometric parameters (Å, º) top
C1—C61.379 (3)C7—H70.98
C1—C21.396 (3)C8—H8A0.96
C1—S11.758 (2)C8—H8B0.96
C2—C31.377 (3)C8—H8C0.96
C2—H20.93C9—H9A0.96
C3—C41.389 (3)C9—H9B0.96
C3—H30.93C9—H9C0.96
C4—N11.376 (3)C10—C121.501 (4)
C4—C51.395 (3)C10—N21.503 (3)
C5—C61.380 (3)C10—C111.510 (3)
C5—H50.93C10—H100.98
C6—H60.93C11—H11A0.96
N1—H1M0.841 (17)C11—H11B0.96
N1—H1N0.839 (17)C11—H11C0.96
S1—O21.4201 (18)C12—H12A0.96
S1—O31.4325 (19)C12—H12B0.96
S1—O11.4446 (17)C12—H12C0.96
C7—C81.504 (3)N2—H2M0.888 (15)
C7—N21.505 (3)N2—H2N0.884 (14)
C7—C91.507 (4)
C6—C1—C2118.81 (19)H8A—C8—H8B109.5
C6—C1—S1121.74 (15)C7—C8—H8C109.5
C2—C1—S1119.45 (16)H8A—C8—H8C109.5
C3—C2—C1120.3 (2)H8B—C8—H8C109.5
C3—C2—H2119.9C7—C9—H9A109.5
C1—C2—H2119.9C7—C9—H9B109.5
C2—C3—C4121.1 (2)H9A—C9—H9B109.5
C2—C3—H3119.4C7—C9—H9C109.5
C4—C3—H3119.4H9A—C9—H9C109.5
N1—C4—C3121.9 (2)H9B—C9—H9C109.5
N1—C4—C5119.9 (2)C12—C10—N2108.6 (2)
C3—C4—C5118.1 (2)C12—C10—C11111.8 (2)
C6—C5—C4120.7 (2)N2—C10—C11110.13 (19)
C6—C5—H5119.6C12—C10—H10108.7
C4—C5—H5119.6N2—C10—H10108.7
C1—C6—C5120.85 (19)C11—C10—H10108.7
C1—C6—H6119.6C10—C11—H11A109.5
C5—C6—H6119.6C10—C11—H11B109.5
C4—N1—H1M120 (2)H11A—C11—H11B109.5
C4—N1—H1N116 (2)C10—C11—H11C109.5
H1M—N1—H1N123 (3)H11A—C11—H11C109.5
O2—S1—O3111.62 (17)H11B—C11—H11C109.5
O2—S1—O1112.51 (14)C10—C12—H12A109.5
O3—S1—O1110.36 (13)C10—C12—H12B109.5
O2—S1—C1107.83 (10)H12A—C12—H12B109.5
O3—S1—C1107.42 (10)C10—C12—H12C109.5
O1—S1—C1106.82 (10)H12A—C12—H12C109.5
C8—C7—N2110.0 (2)H12B—C12—H12C109.5
C8—C7—C9111.8 (2)C10—N2—C7117.08 (18)
N2—C7—C9108.9 (2)C10—N2—H2M107.0 (13)
C8—C7—H7108.7C7—N2—H2M108.9 (13)
N2—C7—H7108.7C10—N2—H2N109.0 (13)
C9—C7—H7108.7C7—N2—H2N106.0 (13)
C7—C8—H8A109.5H2M—N2—H2N109 (2)
C7—C8—H8B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2M···O10.89 (2)2.03 (2)2.878 (3)159 (2)
N2—H2N···O1i0.88 (1)2.11 (2)2.922 (3)152 (2)
N1—H1M···O2ii0.84 (2)2.21 (2)3.013 (3)160 (3)
N1—H1N···O2iii0.84 (2)2.57 (2)3.316 (4)149 (3)
N1—H1N···O3iii0.84 (2)2.67 (2)3.441 (4)153 (3)
C10—H10···O3iv0.982.573.332 (3)135
C12—H12B···O3i0.962.583.468 (4)155
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z1.
 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University, Dakar, Senegal, the Institut de Chimie des Substances Naturelles – CNRS UPR 2301, University Paris-Sud and the Service Commun d'Analyse par Diffraction des Rayons X, Université de Bretagne Occidentale, for financial support.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, J., Liang, Z.-P. & Guo, H.-M. (2007). Acta Cryst. E63, o2884.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLow, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o209–o211.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReiss, G. J. & Meyer, M. K. (2011). Acta Cryst. E67, o2169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRussell, V. A., Etter, M. C. & Ward, M. D. (1994). Chem. Mater. 6, 1206–1217.  CSD CrossRef CAS Web of Science Google Scholar
First citationSarr, M., Boye, M. S., Diasse-Sarr, A., Grosjean, A. & Guionneau, P. (2012). Acta Cryst. E68, o3078.  CSD CrossRef IUCr Journals Google Scholar
First citationSchreuer, J. (1999). Z. Kristallogr. New Cryst. Struct. 214, 317–318.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, P., Zeng, H. & Wu, X. (2016). Z. Kristallogr. New Cryst. Struct. 231, 393–394.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds