organic compounds
Diisopropylammonium 4-aminobenzenesulfonate
aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bInstitut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Univ. Paris-Saclay, 1 av. de la Terrasse, F-91198 Gif-sur-Yvette Cedex, France, and cService Commun d'Analyse par Diffraction des Rayons X, Université de Bretagne Occidentale, 6 avenue Victor Le Gorgeu, CS 93837, F-29238 BREST cedex 3, France
*Correspondence e-mail: bouks89@gmail.com
The title molecular salt, C6H16N+·C6H6NO3S−, was synthesized from a neutralization reaction between sulfanilic acid and diisopropylamine. The consists of diisopropylammonium cations and 4-aminobenzenesulfonate (sulfanilate) anions interacting through a series of N—H⋯O and C—H⋯O hydrogen bonds, leading to the formation of a three-dimensional network structure.
Keywords: crystal structure; sulfanilic acid; sulfanilate anion; diisopropylammonium; 4-aminobenzenesulfonate; N—H⋯O hydrogen bonding.
CCDC reference: 1507861
Structure description
Sulfanilates of alkylammonium cations, such as the sulfanilates of methylammonium (Schreuer, 1999), guanidinium (Russell et al., 1994), triethylammonium (Li et al., 2007) or tetramethylammonium (Wang et al., 2016) have been reported. As a continuation of our work on alkylammonium salts (Sarr et al., 2012), in order to study their interactions with metallic halides, we synthesized the title molecular salt from a neutralization reaction between sulfanilic acid, the structure of which has been reported by Low & Glidewell (2002), and diisopropylamine. Sulfanilic acid, a strong organic acid with pKa = 3.23, donates its sulfonic proton to diisopropylamine to give the title organic salt, C6H16N+·C6H6NO3S−. Its comprises one diisopropylammonium cation and one sulfanilate anion (Fig. 1). The protonation of diisopropylamine leads to an irregular tetrahedral arrangement around the ammonium atom N2, as reported in related structures (Sarr et al., 2012; Reiss & Meyer, 2011). The bond angles around this atom fall within normal ranges: 117.08 (18)° for angle C10—N2—C7, while the C—N—H2N/M angles are smaller and vary from 106.0 (13) to 109 (2) °. The arrangement around the sulfonate atom S1 is distorted tetrahedral, with the various O—S—C and O—S—O angles ranging between 106.82 (10)° for O1—S1—C1 to 112.51 (14)° for O2—S1—O1. In the SO3− group the three S—-O distances are slightly different, viz S1—O2 = 1.4201 (18) Å, S1—O3 = 1.4325 (19) Å and S1—O1 1.4446 (17) Å, due to their different roles in hydrogen bonding.
In the crystal, the ions are connected through N—H⋯O hydrogen bonds (Table 1). Atoms O1 and O2 of the sulfonate group are involved in rather strong N—H⋯O hydrogen bonding. Atom O1 acts as an acceptor of two hydrogen bonds N2—H2M⋯O1 and N2—H2N⋯O1i, forming a four-membered unit with inversion symmetry, enclosing an R42(8) ring motif (Table 1 and Fig. 2). These units are self-assembled through further N—H⋯O hydrogen bonds involving atom O2 and the amino group of the sulfanilate anion (Fig. 3 and Table 1), forming a three-dimensional network. The hydrogen-bonded assembly is consolidated by a weak N1—H1N⋯O3iii hydrogen bond and two C—H⋯O hydrogen bonds (Fig. 3 and Table 1), again involving atom O3.
Synthesis and crystallization
The title compound was obtained by addition of diisopropylamine (7.000 g, 0.069 mol) to an aqueous solution of sulfanilic acid (11.870 g, 0.068 mol) in an 1:1 ratio. The yellow solution obtained was stirred for one h and then filtered. Colourless plate-like crystals of the title molecular salt were obtained by slow evaporation of the filtrate after one week.
Refinement
Crystal data, data collection and structure . The N-bound H atoms were located in difference Fourier maps and refined with distance and angle restraints: N—H and H⋯H distances involving atom N1 are N—H = 0.86 (2) Å and H⋯H = 1.49 (2) Å, and for atom N2 are N—H = 0.90 (2) Å and H⋯H = 1.45 (2) Å, with Uiso(H) = 1.2Ueq(N).
details are summarized in Table 2
|
Structural data
CCDC reference: 1507861
https://doi.org/10.1107/S2414314616015455/wm5316sup1.cif
contains datablocks Global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616015455/wm5316Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616015455/wm5316Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C6H16N+·C6H6NO3S− | F(000) = 592 |
Mr = 274.38 | Dx = 1.259 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2619 reflections |
a = 8.1712 (4) Å | θ = 3.8–27.1° |
b = 20.1515 (9) Å | µ = 0.23 mm−1 |
c = 9.1360 (4) Å | T = 296 K |
β = 105.806 (5)° | Fragment of big plate, colourless |
V = 1447.47 (11) Å3 | 0.42 × 0.26 × 0.18 mm |
Z = 4 |
Agilent Xcalibur Sapphire2 diffractometer | 2963 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2340 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 8.3622 pixels mm-1 | θmax = 26.4°, θmin = 3.6° |
ω scans | h = −9→10 |
Absorption correction: analytical (CrysAlis PRO; Agilent, 2014) | k = −24→25 |
Tmin = 0.952, Tmax = 0.970 | l = −11→11 |
6311 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.136 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0632P)2 + 0.5536P] where P = (Fo2 + 2Fc2)/3 |
2963 reflections | (Δ/σ)max < 0.001 |
179 parameters | Δρmax = 0.34 e Å−3 |
14 restraints | Δρmin = −0.28 e Å−3 |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8387 (2) | 0.15317 (10) | 0.7706 (2) | 0.0370 (4) | |
C2 | 0.8828 (3) | 0.20191 (11) | 0.8832 (2) | 0.0462 (5) | |
H2 | 0.8014 | 0.2179 | 0.9284 | 0.055* | |
C3 | 1.0462 (3) | 0.22647 (11) | 0.9277 (3) | 0.0527 (6) | |
H3 | 1.0738 | 0.259 | 1.0027 | 0.063* | |
C4 | 1.1704 (3) | 0.20355 (11) | 0.8624 (3) | 0.0469 (5) | |
C5 | 1.1258 (3) | 0.15426 (11) | 0.7514 (2) | 0.0448 (5) | |
H5 | 1.2074 | 0.1377 | 0.7073 | 0.054* | |
C6 | 0.9619 (3) | 0.12987 (10) | 0.7063 (2) | 0.0415 (5) | |
H6 | 0.9342 | 0.0973 | 0.6315 | 0.05* | |
N1 | 1.3337 (3) | 0.22806 (13) | 0.9042 (3) | 0.0775 (8) | |
S1 | 0.62887 (6) | 0.12319 (3) | 0.71455 (6) | 0.04264 (19) | |
O1 | 0.6264 (2) | 0.06898 (9) | 0.6105 (2) | 0.0681 (5) | |
O2 | 0.5214 (2) | 0.17641 (10) | 0.6456 (3) | 0.1034 (9) | |
O3 | 0.5882 (3) | 0.09977 (13) | 0.8485 (2) | 0.0992 (8) | |
H1M | 1.362 (4) | 0.2562 (15) | 0.975 (3) | 0.119* | |
H1N | 1.405 (3) | 0.2074 (16) | 0.871 (4) | 0.119* | |
C7 | 0.2667 (3) | 0.09559 (11) | 0.2422 (3) | 0.0511 (6) | |
H7 | 0.2799 | 0.1423 | 0.2176 | 0.061* | |
C8 | 0.1624 (4) | 0.06106 (14) | 0.1017 (3) | 0.0700 (8) | |
H8A | 0.2188 | 0.0645 | 0.0225 | 0.105* | |
H8B | 0.0524 | 0.0816 | 0.0687 | 0.105* | |
H8C | 0.1494 | 0.0151 | 0.1241 | 0.105* | |
C9 | 0.1832 (4) | 0.09238 (17) | 0.3702 (3) | 0.0785 (9) | |
H9A | 0.1652 | 0.0468 | 0.3924 | 0.118* | |
H9B | 0.0759 | 0.1151 | 0.3407 | 0.118* | |
H9C | 0.2554 | 0.1132 | 0.459 | 0.118* | |
C10 | 0.5643 (3) | 0.08053 (12) | 0.2043 (3) | 0.0547 (6) | |
H10 | 0.5049 | 0.0785 | 0.0957 | 0.066* | |
C11 | 0.6339 (4) | 0.14973 (14) | 0.2419 (4) | 0.0739 (8) | |
H11A | 0.6931 | 0.1523 | 0.348 | 0.111* | |
H11B | 0.5419 | 0.181 | 0.2191 | 0.111* | |
H11C | 0.711 | 0.1599 | 0.1823 | 0.111* | |
C12 | 0.7029 (4) | 0.02934 (15) | 0.2389 (4) | 0.0865 (10) | |
H12A | 0.7822 | 0.0387 | 0.1809 | 0.13* | |
H12B | 0.6543 | −0.0138 | 0.2123 | 0.13* | |
H12C | 0.761 | 0.0305 | 0.3454 | 0.13* | |
N2 | 0.4402 (2) | 0.06439 (9) | 0.2941 (2) | 0.0454 (4) | |
H2M | 0.489 (2) | 0.0764 (11) | 0.3896 (18) | 0.054* | |
H2N | 0.423 (2) | 0.0211 (7) | 0.292 (3) | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0406 (10) | 0.0316 (10) | 0.0346 (10) | −0.0003 (8) | 0.0031 (8) | 0.0024 (8) |
C2 | 0.0475 (12) | 0.0402 (11) | 0.0500 (12) | 0.0032 (10) | 0.0118 (10) | −0.0093 (9) |
C3 | 0.0564 (13) | 0.0411 (12) | 0.0551 (13) | −0.0046 (10) | 0.0059 (11) | −0.0181 (10) |
C4 | 0.0448 (12) | 0.0404 (11) | 0.0509 (12) | −0.0049 (10) | 0.0051 (10) | −0.0006 (10) |
C5 | 0.0447 (12) | 0.0476 (12) | 0.0432 (11) | −0.0021 (10) | 0.0140 (9) | −0.0033 (9) |
C6 | 0.0503 (12) | 0.0410 (11) | 0.0324 (10) | −0.0051 (9) | 0.0100 (9) | −0.0061 (8) |
N1 | 0.0490 (13) | 0.0770 (18) | 0.103 (2) | −0.0183 (12) | 0.0153 (13) | −0.0326 (14) |
S1 | 0.0397 (3) | 0.0396 (3) | 0.0442 (3) | −0.0028 (2) | 0.0039 (2) | 0.0011 (2) |
O1 | 0.0552 (10) | 0.0690 (12) | 0.0768 (12) | −0.0175 (9) | 0.0123 (9) | −0.0323 (10) |
O2 | 0.0505 (11) | 0.0571 (12) | 0.173 (2) | 0.0051 (9) | −0.0205 (13) | 0.0298 (14) |
O3 | 0.0780 (14) | 0.162 (2) | 0.0608 (12) | −0.0538 (15) | 0.0235 (10) | 0.0010 (14) |
C7 | 0.0507 (13) | 0.0405 (12) | 0.0561 (13) | −0.0019 (10) | 0.0041 (10) | −0.0012 (10) |
C8 | 0.0728 (17) | 0.0691 (17) | 0.0521 (14) | −0.0021 (14) | −0.0102 (12) | 0.0000 (13) |
C9 | 0.0555 (16) | 0.109 (2) | 0.0722 (18) | −0.0051 (16) | 0.0195 (13) | −0.0246 (18) |
C10 | 0.0621 (14) | 0.0582 (14) | 0.0486 (13) | −0.0153 (12) | 0.0231 (11) | −0.0065 (11) |
C11 | 0.085 (2) | 0.0542 (16) | 0.090 (2) | −0.0174 (15) | 0.0366 (17) | 0.0077 (14) |
C12 | 0.078 (2) | 0.0658 (19) | 0.134 (3) | −0.0093 (16) | 0.060 (2) | −0.0197 (19) |
N2 | 0.0478 (10) | 0.0454 (10) | 0.0415 (9) | −0.0075 (9) | 0.0096 (8) | 0.0018 (8) |
C1—C6 | 1.379 (3) | C7—H7 | 0.98 |
C1—C2 | 1.396 (3) | C8—H8A | 0.96 |
C1—S1 | 1.758 (2) | C8—H8B | 0.96 |
C2—C3 | 1.377 (3) | C8—H8C | 0.96 |
C2—H2 | 0.93 | C9—H9A | 0.96 |
C3—C4 | 1.389 (3) | C9—H9B | 0.96 |
C3—H3 | 0.93 | C9—H9C | 0.96 |
C4—N1 | 1.376 (3) | C10—C12 | 1.501 (4) |
C4—C5 | 1.395 (3) | C10—N2 | 1.503 (3) |
C5—C6 | 1.380 (3) | C10—C11 | 1.510 (3) |
C5—H5 | 0.93 | C10—H10 | 0.98 |
C6—H6 | 0.93 | C11—H11A | 0.96 |
N1—H1M | 0.841 (17) | C11—H11B | 0.96 |
N1—H1N | 0.839 (17) | C11—H11C | 0.96 |
S1—O2 | 1.4201 (18) | C12—H12A | 0.96 |
S1—O3 | 1.4325 (19) | C12—H12B | 0.96 |
S1—O1 | 1.4446 (17) | C12—H12C | 0.96 |
C7—C8 | 1.504 (3) | N2—H2M | 0.888 (15) |
C7—N2 | 1.505 (3) | N2—H2N | 0.884 (14) |
C7—C9 | 1.507 (4) | ||
C6—C1—C2 | 118.81 (19) | H8A—C8—H8B | 109.5 |
C6—C1—S1 | 121.74 (15) | C7—C8—H8C | 109.5 |
C2—C1—S1 | 119.45 (16) | H8A—C8—H8C | 109.5 |
C3—C2—C1 | 120.3 (2) | H8B—C8—H8C | 109.5 |
C3—C2—H2 | 119.9 | C7—C9—H9A | 109.5 |
C1—C2—H2 | 119.9 | C7—C9—H9B | 109.5 |
C2—C3—C4 | 121.1 (2) | H9A—C9—H9B | 109.5 |
C2—C3—H3 | 119.4 | C7—C9—H9C | 109.5 |
C4—C3—H3 | 119.4 | H9A—C9—H9C | 109.5 |
N1—C4—C3 | 121.9 (2) | H9B—C9—H9C | 109.5 |
N1—C4—C5 | 119.9 (2) | C12—C10—N2 | 108.6 (2) |
C3—C4—C5 | 118.1 (2) | C12—C10—C11 | 111.8 (2) |
C6—C5—C4 | 120.7 (2) | N2—C10—C11 | 110.13 (19) |
C6—C5—H5 | 119.6 | C12—C10—H10 | 108.7 |
C4—C5—H5 | 119.6 | N2—C10—H10 | 108.7 |
C1—C6—C5 | 120.85 (19) | C11—C10—H10 | 108.7 |
C1—C6—H6 | 119.6 | C10—C11—H11A | 109.5 |
C5—C6—H6 | 119.6 | C10—C11—H11B | 109.5 |
C4—N1—H1M | 120 (2) | H11A—C11—H11B | 109.5 |
C4—N1—H1N | 116 (2) | C10—C11—H11C | 109.5 |
H1M—N1—H1N | 123 (3) | H11A—C11—H11C | 109.5 |
O2—S1—O3 | 111.62 (17) | H11B—C11—H11C | 109.5 |
O2—S1—O1 | 112.51 (14) | C10—C12—H12A | 109.5 |
O3—S1—O1 | 110.36 (13) | C10—C12—H12B | 109.5 |
O2—S1—C1 | 107.83 (10) | H12A—C12—H12B | 109.5 |
O3—S1—C1 | 107.42 (10) | C10—C12—H12C | 109.5 |
O1—S1—C1 | 106.82 (10) | H12A—C12—H12C | 109.5 |
C8—C7—N2 | 110.0 (2) | H12B—C12—H12C | 109.5 |
C8—C7—C9 | 111.8 (2) | C10—N2—C7 | 117.08 (18) |
N2—C7—C9 | 108.9 (2) | C10—N2—H2M | 107.0 (13) |
C8—C7—H7 | 108.7 | C7—N2—H2M | 108.9 (13) |
N2—C7—H7 | 108.7 | C10—N2—H2N | 109.0 (13) |
C9—C7—H7 | 108.7 | C7—N2—H2N | 106.0 (13) |
C7—C8—H8A | 109.5 | H2M—N2—H2N | 109 (2) |
C7—C8—H8B | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2M···O1 | 0.89 (2) | 2.03 (2) | 2.878 (3) | 159 (2) |
N2—H2N···O1i | 0.88 (1) | 2.11 (2) | 2.922 (3) | 152 (2) |
N1—H1M···O2ii | 0.84 (2) | 2.21 (2) | 3.013 (3) | 160 (3) |
N1—H1N···O2iii | 0.84 (2) | 2.57 (2) | 3.316 (4) | 149 (3) |
N1—H1N···O3iii | 0.84 (2) | 2.67 (2) | 3.441 (4) | 153 (3) |
C10—H10···O3iv | 0.98 | 2.57 | 3.332 (3) | 135 |
C12—H12B···O3i | 0.96 | 2.58 | 3.468 (4) | 155 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1, −y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z−1. |
Acknowledgements
The authors acknowledge the Cheikh Anta Diop University, Dakar, Senegal, the Institut de Chimie des Substances Naturelles – CNRS UPR 2301, University Paris-Sud and the Service Commun d'Analyse par Diffraction des Rayons X, Université de Bretagne Occidentale, for financial support.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Li, J., Liang, Z.-P. & Guo, H.-M. (2007). Acta Cryst. E63, o2884. Web of Science CSD CrossRef IUCr Journals Google Scholar
Low, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o209–o211. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Reiss, G. J. & Meyer, M. K. (2011). Acta Cryst. E67, o2169. Web of Science CSD CrossRef IUCr Journals Google Scholar
Russell, V. A., Etter, M. C. & Ward, M. D. (1994). Chem. Mater. 6, 1206–1217. CSD CrossRef CAS Web of Science Google Scholar
Sarr, M., Boye, M. S., Diasse-Sarr, A., Grosjean, A. & Guionneau, P. (2012). Acta Cryst. E68, o3078. CSD CrossRef IUCr Journals Google Scholar
Schreuer, J. (1999). Z. Kristallogr. New Cryst. Struct. 214, 317–318. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, P., Zeng, H. & Wu, X. (2016). Z. Kristallogr. New Cryst. Struct. 231, 393–394. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.