metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[tris­­{μ-2-[(di­methyl­amino)­meth­yl]imidazolato-κ3N1,N2:N3}(nitrato-κO)dizinc(II)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan, and bInternational Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Moto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan
*Correspondence e-mail: sadakiyo@i2cner.kyushu-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 August 2016; accepted 13 October 2016; online 18 October 2016)

In the title coordination polymer, [Zn2(C6H10N3)3(NO3)]n, two independent ZnII ions are tetra­hedrally coordinated by the anionic ligands, viz. 2-[(di­methyl­amino)­meth­yl]imidazolate or nitrate ions. One ZnII ion is coordinated by the imidazolate N atoms of three anions and an O atom of the nitrate ion. The second ZnII ion is coordinated by imidazolate N atoms of three anions and one amino N atom of one such ligand. The 2-[(di­methyl­amino)­meth­yl]imidazolate anions are bridging the ZnII ions to form a helical chain structure along [001]. The chains are further linked by the bridging ligands into a three-dimensional framework structure. The nitrate anion is disordered over two sets of sites and was refined with two pairs of three O atoms using half-occupancy for each O atom.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Metal–organic compounds with framework structures and in particular coordination polymers containing imidazolate linkers have been widely studied to create various zeolite-like compounds (Park et al., 2006[Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2006). PNAS, 103, 10186-10191.]) because the bridging angle of the imidazolate ligands (145°) is close to that of Si—O—Si in zeolites. In the present study, the structure of a new imidazolate-bridged coordination polymer, [Zn2(C6H10N3)3(NO3)]n, is reported.

In the crystal structure, three unique 2-[(di­methyl­amino)­meth­yl]imidazolate ligands bridge two unique ZnII ions. Since the 2-[(di­methyl­amino)­meth­yl]imidazolate ligand also has an amino group as an additional coordination site, Zn2 is tetra­hedrally coordinated by three imidazolate N atoms and one amino N atom, and thus Zn2 is bridged to three adjacent Zn1 ions. Zn1, on the other hand, is tetra­hedrally coordinated by three imidazolate N atoms and one nitrate O atom, whereby the nitrate anion is positionally disordered over two sites (Fig. 1[link]). The Zn1 and Zn2 ions construct helical chains along [001] (Fig. 2[link]). These chains are further connected to neighboring chains through the imidazolato ligands to build up a three-dimensional framework structure (Fig. 3[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the main structural motif in [Zn2(C6N3H10)3(NO3)]n, with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
The one-dimensional helical chain consisting of the ligands and ZnII ions.
[Figure 3]
Figure 3
Three-dimensional arrangements of ZnII ions (displayed as spheres) and connections between the helical chains. Gray and pink colours show zinc atoms and an example of a helical chain along [001], respectively.

Synthesis and crystallization

For the preparation of 2-[(di­methyl­amino)­meth­yl]imidazole, see: Quan et al. (2005[Quan, M. L., Lam, P. Y. S., Han, Q., Pinto, D. J. P., He, M. Y., Li, R., Ellis, C. D., Clark, C. G., Teleha, C. A., Sun, J.-H., Alexander, R. S., Bai, S., Luettgen, J. M., Knabb, R. M., Wong, P. C. & Wexler, R. R. (2005). J. Med. Chem. 48, 1729-1744.]).

A mixture of imidazole-2-carbaldehyde (9.609 g, 100 mmol) in methanol (100 ml) was put in a 500 ml two-neck round-bottomed flask equipped with a reflux condenser. To this suspension, a solution of di­methyl­amine (40% aqueous solution, 100 ml) was slowly added at room temperature. After that, sodium borohydride (11.349 g, 300 mmol) was cautiously added portionwise over 45 min. The reaction mixture was then refluxed for two days. The reaction contents were concentrated by evaporation and added to a 500 ml separatory funnel containing brine (200 ml). The contents were extracted with ethyl acetate (2 × 200 ml) and the ethyl acetate extract was discarded. The aqueous layer was extracted with CHCl3 (4 × 150 ml) and the organic layer dried over Na2SO4, filtered, and concentrated under vacuum to give 2-[(di­methyl­amino)­meth­yl]imidazole as a yellow solid. 1H NMR(D2O): δ = 7.07(s, 2H), 3.60(s, 2H), and 2.21(s, 6H) p.p.m.

Crystals of [Zn2(C6H10N3)3(NO3)]n were grown by pouring a solution of 2-[(di­methyl­amino)­meth­yl]imidazole (0.520 g, 4.14 mmol) with methanol (5.0 ml) slowly onto a solution of Zn(NO3)2·6H2O (0.496 g, 1.67 mmol) in methanol (5.0 ml) in a test tube. After keeping the solution at 323 K for two days, colorless hexa­gonal-shaped single crystals were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The Flack parameter refined to 0.010 (8), indicating that the determination of the absolute structure is correct. The nitrate anion is disordered over two sets of sites and was refined with two pairs of three O atoms using half-occupancy for each O atom.

Table 1
Experimental details

Crystal data
Chemical formula [Zn2(C6H10N3)3(NO3)]
Mr 565.26
Crystal system, space group Hexagonal, P61
Temperature (K) 100
a, c (Å) 9.2437 (8), 47.683 (4)
V3) 3528.5 (5)
Z 6
Radiation type Mo Kα
μ (mm−1) 2.08
Crystal size (mm) 0.10 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.819, 0.819
No. of measured, independent and observed [I > 2σ(I)] reflections 21198, 5835, 5595
Rint 0.023
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.061, 1.03
No. of reflections 5835
No. of parameters 331
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.86, −0.26
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2004 Friedel pairs
Absolute structure parameter 0.010 (8)
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). SIR2002. University of Bari, Italy.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Yadokari-XG (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218-224.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: Yadokari-XG (Kabuto et al., 2009).

Poly[tris{µ-2-[(dimethylamino)methyl]imidazolato-κ3N1,N2:N3}(nitrato-κO)dizinc(II)] top
Crystal data top
[Zn2(C6H10N3)3(NO3)]Dx = 1.596 Mg m3
Mr = 565.26Mo Kα radiation, λ = 0.71069 Å
Hexagonal, P61Cell parameters from 9942 reflections
Hall symbol: P 61θ = 2.5–28.8°
a = 9.2437 (8) ŵ = 2.08 mm1
c = 47.683 (4) ÅT = 100 K
V = 3528.5 (5) Å3Block, colorless
Z = 60.10 × 0.10 × 0.10 mm
F(000) = 1752
Data collection top
Bruker APEXII CCD
diffractometer
5835 independent reflections
Radiation source: fine-focus sealed tube5595 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 29.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 912
Tmin = 0.819, Tmax = 0.819k = 1112
21198 measured reflectionsl = 6464
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0286P)2 + 1.2071P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5835 reflectionsΔρmax = 0.86 e Å3
331 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 2004 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.96338 (4)0.51358 (3)0.423976 (5)0.02299 (7)
Zn20.91659 (3)0.90826 (3)0.517388 (5)0.01875 (6)
N11.0431 (2)0.7009 (2)0.39668 (4)0.0187 (4)
N20.8514 (2)0.7160 (2)0.49260 (4)0.0189 (4)
N31.1380 (2)1.0233 (2)0.53585 (4)0.0191 (4)
N40.8770 (2)0.5671 (2)0.45813 (4)0.0188 (4)
N50.8621 (3)0.2810 (2)0.41073 (4)0.0227 (4)
N60.7489 (2)0.8132 (2)0.55003 (4)0.0204 (4)
N70.6872 (2)0.4885 (2)0.39504 (4)0.0213 (4)
C10.9489 (3)0.7127 (3)0.47207 (5)0.0172 (4)
N81.1186 (2)1.0145 (2)0.46746 (4)0.0215 (4)
N90.8060 (2)1.0574 (2)0.51150 (4)0.0214 (4)
C20.7078 (3)0.5625 (3)0.49164 (5)0.0220 (4)
H10.61370.52610.50360.026*
N101.2858 (3)0.5830 (3)0.44997 (5)0.0295 (5)
C30.9140 (3)0.2259 (3)0.38929 (5)0.0201 (4)
C41.2009 (3)0.8129 (3)0.38672 (5)0.0233 (5)
H21.30080.81160.39080.028*
C51.1198 (3)0.8562 (3)0.46715 (5)0.0192 (4)
H31.19620.85830.48190.023*
H41.16170.84260.44880.023*
C60.6743 (3)0.6850 (3)0.56929 (5)0.0238 (5)
H50.69160.59220.57080.029*
C70.7236 (3)0.4722 (3)0.47082 (5)0.0234 (5)
H60.64220.36150.46570.028*
C81.2627 (3)1.1880 (3)0.53668 (5)0.0237 (5)
H71.26161.27770.52720.028*
C90.9425 (3)0.7511 (3)0.38563 (5)0.0170 (4)
C100.6820 (3)0.4142 (3)0.36753 (5)0.0280 (5)
H80.60790.43100.35500.042*
H90.64000.29430.36980.042*
H100.79480.46770.35950.042*
C110.7485 (3)1.0731 (3)0.53982 (5)0.0235 (5)
H110.65701.09870.53800.028*
H120.84171.16620.55010.028*
C120.7593 (3)0.6679 (3)0.39220 (5)0.0198 (4)
H130.74300.71420.40990.024*
H140.70110.69170.37700.024*
C130.6598 (3)0.9608 (3)0.49275 (5)0.0292 (5)
H150.59671.01960.49100.044*
H160.58770.84960.50070.044*
H170.69890.94960.47420.044*
C141.0359 (3)1.0285 (3)0.44220 (5)0.0285 (5)
H181.09971.03140.42560.043*
H191.03011.13140.44310.043*
H200.92270.93210.44100.043*
C150.9136 (4)1.2257 (3)0.49959 (6)0.0308 (5)
H210.95181.21550.48090.046*
H221.01051.28910.51180.046*
H230.84991.28410.49810.046*
C160.7148 (3)0.1427 (3)0.41900 (5)0.0260 (5)
H240.64510.14040.43380.031*
C171.2918 (3)1.1527 (3)0.46788 (6)0.0322 (6)
H251.34901.14960.45080.048*
H261.34931.14170.48430.048*
H271.29271.25910.46880.048*
C180.5178 (3)0.4166 (4)0.40630 (6)0.0340 (6)
H280.52210.46400.42490.051*
H290.46780.29520.40790.051*
H300.45000.44240.39370.051*
O11.2289 (5)0.5962 (6)0.42732 (8)0.0351 (9)0.50
O21.1877 (7)0.4844 (8)0.46768 (10)0.0545 (13)0.50
O31.4340 (5)0.6432 (7)0.45486 (11)0.0483 (11)0.50
O41.3830 (9)0.7235 (7)0.44125 (15)0.092 (2)0.50
O51.1560 (6)0.4869 (6)0.43798 (13)0.0569 (14)0.50
O61.3130 (11)0.5543 (7)0.47393 (11)0.086 (2)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03698 (15)0.02441 (13)0.01474 (11)0.02071 (12)0.00109 (11)0.00093 (10)
Zn20.02086 (12)0.02111 (12)0.01535 (11)0.01129 (10)0.00115 (10)0.00447 (10)
N10.0165 (8)0.0235 (9)0.0162 (9)0.0102 (7)0.0002 (7)0.0016 (7)
N20.0209 (9)0.0191 (9)0.0143 (8)0.0081 (7)0.0009 (7)0.0018 (7)
N30.0217 (9)0.0173 (8)0.0167 (9)0.0085 (7)0.0011 (7)0.0010 (7)
N40.0225 (9)0.0179 (8)0.0151 (9)0.0095 (7)0.0004 (7)0.0016 (7)
N50.0373 (11)0.0253 (10)0.0122 (9)0.0206 (9)0.0016 (8)0.0011 (7)
N60.0213 (9)0.0212 (9)0.0170 (9)0.0093 (8)0.0006 (7)0.0003 (7)
N70.0167 (9)0.0220 (9)0.0206 (9)0.0063 (7)0.0016 (7)0.0009 (8)
C10.0226 (10)0.0197 (9)0.0114 (9)0.0122 (8)0.0005 (8)0.0003 (7)
N80.0263 (10)0.0178 (8)0.0156 (9)0.0074 (7)0.0008 (7)0.0011 (7)
N90.0264 (9)0.0254 (9)0.0150 (9)0.0149 (8)0.0030 (7)0.0003 (7)
C20.0203 (10)0.0197 (10)0.0215 (11)0.0067 (9)0.0060 (9)0.0007 (9)
N100.0276 (11)0.0275 (10)0.0348 (13)0.0148 (9)0.0076 (9)0.0033 (9)
C30.0261 (11)0.0236 (11)0.0142 (10)0.0151 (9)0.0047 (8)0.0041 (8)
C40.0164 (10)0.0322 (12)0.0213 (11)0.0121 (9)0.0007 (9)0.0020 (9)
C50.0224 (10)0.0230 (10)0.0135 (10)0.0124 (9)0.0014 (8)0.0020 (8)
C60.0207 (10)0.0254 (11)0.0220 (11)0.0091 (9)0.0002 (9)0.0035 (9)
C70.0247 (11)0.0180 (10)0.0232 (12)0.0074 (9)0.0009 (9)0.0034 (9)
C80.0289 (12)0.0174 (10)0.0224 (12)0.0097 (9)0.0035 (9)0.0027 (9)
C90.0164 (9)0.0191 (9)0.0151 (10)0.0087 (8)0.0019 (8)0.0042 (8)
C100.0284 (12)0.0265 (12)0.0217 (12)0.0082 (10)0.0052 (10)0.0029 (9)
C110.0301 (12)0.0281 (11)0.0164 (11)0.0177 (10)0.0054 (9)0.0011 (9)
C120.0169 (10)0.0237 (11)0.0198 (11)0.0109 (8)0.0003 (8)0.0010 (9)
C130.0307 (12)0.0433 (14)0.0183 (11)0.0221 (11)0.0015 (10)0.0029 (10)
C140.0416 (14)0.0278 (12)0.0172 (11)0.0181 (11)0.0037 (10)0.0023 (9)
C150.0392 (14)0.0317 (13)0.0265 (13)0.0216 (11)0.0098 (11)0.0072 (10)
C160.0379 (13)0.0328 (12)0.0171 (11)0.0252 (11)0.0046 (9)0.0050 (9)
C170.0306 (13)0.0243 (12)0.0254 (13)0.0014 (10)0.0080 (10)0.0022 (10)
C180.0194 (11)0.0378 (14)0.0333 (15)0.0055 (10)0.0016 (10)0.0053 (11)
O10.034 (2)0.055 (3)0.0236 (19)0.027 (2)0.0030 (15)0.0123 (18)
O20.049 (3)0.084 (4)0.028 (2)0.033 (3)0.010 (2)0.026 (2)
O30.0231 (19)0.068 (3)0.056 (3)0.025 (2)0.0217 (19)0.017 (2)
O40.091 (5)0.045 (3)0.072 (4)0.017 (3)0.008 (4)0.028 (3)
O50.032 (2)0.045 (3)0.090 (4)0.017 (2)0.024 (3)0.015 (3)
O60.128 (6)0.051 (3)0.031 (3)0.008 (4)0.028 (4)0.004 (2)
Geometric parameters (Å, º) top
Zn1—N51.971 (2)C4—H20.9500
Zn1—N41.9827 (19)C5—H30.9900
Zn1—N11.9898 (19)C5—H40.9900
Zn1—O52.029 (4)C6—C16ii1.357 (3)
Zn1—O12.182 (4)C6—H50.9500
Zn2—N21.9611 (19)C7—H60.9500
Zn2—N31.979 (2)C8—C4i1.361 (4)
Zn2—N62.058 (2)C8—H70.9500
Zn2—N92.1054 (19)C9—N3iv1.336 (3)
N1—C91.338 (3)C9—C121.502 (3)
N1—C41.383 (3)C10—H80.9800
N2—C11.341 (3)C10—H90.9800
N2—C21.376 (3)C10—H100.9800
N3—C9i1.336 (3)C11—C3ii1.499 (3)
N3—C81.376 (3)C11—H110.9900
N4—C11.342 (3)C11—H120.9900
N4—C71.379 (3)C12—H130.9900
N5—C31.333 (3)C12—H140.9900
N5—C161.379 (3)C13—H150.9800
N6—C3ii1.337 (3)C13—H160.9800
N6—C61.381 (3)C13—H170.9800
N7—C121.451 (3)C14—H180.9800
N7—C181.463 (3)C14—H190.9800
N7—C101.470 (3)C14—H200.9800
C1—C51.489 (3)C15—H210.9800
N8—C171.466 (3)C15—H220.9800
N8—C141.466 (3)C15—H230.9800
N8—C51.468 (3)C16—C6iii1.357 (3)
N9—C151.479 (3)C16—H240.9500
N9—C111.484 (3)C17—H250.9800
N9—C131.489 (3)C17—H260.9800
C2—C71.351 (3)C17—H270.9800
C2—H10.9500C18—H280.9800
N10—O31.216 (4)C18—H290.9800
N10—O51.220 (5)C18—H300.9800
N10—O41.225 (5)O1—O51.026 (6)
N10—O61.227 (6)O1—O41.476 (8)
N10—O11.234 (4)O2—O61.049 (9)
N10—O21.240 (5)O2—O51.448 (8)
C3—N6iii1.337 (3)O3—O41.243 (9)
C3—C11iii1.499 (3)O3—O61.354 (9)
C4—C8iv1.361 (4)
N5—Zn1—N4120.32 (8)C2—C7—H6125.6
N5—Zn1—N1120.45 (8)N4—C7—H6125.6
N4—Zn1—N1109.89 (8)C4i—C8—N3108.6 (2)
N5—Zn1—O586.57 (15)C4i—C8—H7125.7
N4—Zn1—O5104.32 (19)N3—C8—H7125.7
N1—Zn1—O5110.81 (19)N3iv—C9—N1112.97 (19)
N5—Zn1—O1104.05 (14)N3iv—C9—C12124.2 (2)
N4—Zn1—O1112.07 (12)N1—C9—C12122.8 (2)
N1—Zn1—O183.14 (12)N7—C10—H8109.5
O5—Zn1—O127.90 (18)N7—C10—H9109.5
N2—Zn2—N3121.43 (8)H8—C10—H9109.5
N2—Zn2—N6104.15 (8)N7—C10—H10109.5
N3—Zn2—N6104.40 (8)H8—C10—H10109.5
N2—Zn2—N9118.88 (8)H9—C10—H10109.5
N3—Zn2—N9114.69 (8)N9—C11—C3ii110.31 (18)
N6—Zn2—N982.62 (8)N9—C11—H11109.6
C9—N1—C4105.11 (19)C3ii—C11—H11109.6
C9—N1—Zn1122.68 (15)N9—C11—H12109.6
C4—N1—Zn1132.00 (16)C3ii—C11—H12109.6
C1—N2—C2105.33 (19)H11—C11—H12108.1
C1—N2—Zn2123.71 (15)N7—C12—C9111.15 (18)
C2—N2—Zn2130.96 (15)N7—C12—H13109.4
C9i—N3—C8105.18 (19)C9—C12—H13109.4
C9i—N3—Zn2122.17 (15)N7—C12—H14109.4
C8—N3—Zn2132.59 (16)C9—C12—H14109.4
C1—N4—C7104.87 (18)H13—C12—H14108.0
C1—N4—Zn1126.74 (15)N9—C13—H15109.5
C7—N4—Zn1128.02 (15)N9—C13—H16109.5
C3—N5—C16104.0 (2)H15—C13—H16109.5
C3—N5—Zn1126.65 (17)N9—C13—H17109.5
C16—N5—Zn1128.99 (16)H15—C13—H17109.5
C3ii—N6—C6104.74 (19)H16—C13—H17109.5
C3ii—N6—Zn2110.60 (15)N8—C14—H18109.5
C6—N6—Zn2144.64 (17)N8—C14—H19109.5
C12—N7—C18109.21 (19)H18—C14—H19109.5
C12—N7—C10109.88 (19)N8—C14—H20109.5
C18—N7—C10109.74 (19)H18—C14—H20109.5
N2—C1—N4112.5 (2)H19—C14—H20109.5
N2—C1—C5121.4 (2)N9—C15—H21109.5
N4—C1—C5126.0 (2)N9—C15—H22109.5
C17—N8—C14108.9 (2)H21—C15—H22109.5
C17—N8—C5108.6 (2)N9—C15—H23109.5
C14—N8—C5110.11 (18)H21—C15—H23109.5
C15—N9—C11109.38 (19)H22—C15—H23109.5
C15—N9—C13109.37 (19)C6iii—C16—N5109.3 (2)
C11—N9—C13110.07 (19)C6iii—C16—H24125.3
C15—N9—Zn2116.67 (15)N5—C16—H24125.3
C11—N9—Zn2104.92 (14)N8—C17—H25109.5
C13—N9—Zn2106.24 (15)N8—C17—H26109.5
C7—C2—N2108.4 (2)H25—C17—H26109.5
C7—C2—H1125.8N8—C17—H27109.5
N2—C2—H1125.8H25—C17—H27109.5
O3—N10—O5153.6 (4)H26—C17—H27109.5
O3—N10—O461.2 (5)N7—C18—H28109.5
O5—N10—O4123.1 (5)N7—C18—H29109.5
O3—N10—O667.3 (5)H28—C18—H29109.5
O5—N10—O6120.8 (5)N7—C18—H30109.5
O4—N10—O6115.1 (5)H28—C18—H30109.5
O3—N10—O1124.1 (4)H29—C18—H30109.5
O5—N10—O149.4 (3)O5—O1—N1064.6 (3)
O4—N10—O173.8 (4)O5—O1—O4117.3 (5)
O6—N10—O1168.6 (5)N10—O1—O452.8 (3)
O3—N10—O2116.7 (4)O5—O1—Zn167.8 (3)
O5—N10—O272.1 (4)N10—O1—Zn1119.3 (3)
O4—N10—O2152.8 (5)O4—O1—Zn1141.3 (5)
O6—N10—O250.3 (4)O6—O2—N1064.2 (4)
O1—N10—O2118.5 (4)O6—O2—O5116.0 (5)
N5—C3—N6iii113.9 (2)N10—O2—O553.3 (3)
N5—C3—C11iii126.3 (2)N10—O3—O459.7 (3)
N6iii—C3—C11iii119.7 (2)N10—O3—O656.7 (4)
C8iv—C4—N1108.1 (2)O4—O3—O6105.5 (6)
C8iv—C4—H2125.9N10—O4—O359.1 (4)
N1—C4—H2125.9N10—O4—O153.4 (3)
N8—C5—C1110.65 (18)O3—O4—O1105.2 (5)
N8—C5—H3109.5O1—O5—N1066.0 (3)
C1—C5—H3109.5O1—O5—O2117.5 (5)
N8—C5—H4109.5N10—O5—O254.6 (3)
C1—C5—H4109.5O1—O5—Zn184.3 (4)
H3—C5—H4108.1N10—O5—Zn1132.0 (4)
C16ii—C6—N6107.9 (2)O2—O5—Zn1121.4 (4)
C16ii—C6—H5126.0O2—O6—N1065.5 (4)
N6—C6—H5126.0O2—O6—O3120.4 (6)
C2—C7—N4108.9 (2)N10—O6—O356.0 (3)
N5—Zn1—N1—C985.68 (19)O3—N10—O1—Zn1170.8 (3)
N4—Zn1—N1—C960.98 (19)O5—N10—O1—Zn141.6 (4)
O5—Zn1—N1—C9175.8 (2)O4—N10—O1—Zn1134.2 (5)
O1—Zn1—N1—C9172.0 (2)O6—N10—O1—Zn18 (2)
N5—Zn1—N1—C4100.4 (2)O2—N10—O1—Zn119.4 (6)
N4—Zn1—N1—C4113.0 (2)N5—Zn1—O1—O552.8 (4)
O5—Zn1—N1—C41.8 (3)N4—Zn1—O1—O578.7 (4)
O1—Zn1—N1—C41.9 (2)N1—Zn1—O1—O5172.5 (4)
N3—Zn2—N2—C147.6 (2)N5—Zn1—O1—N1093.2 (3)
N6—Zn2—N2—C1164.67 (18)N4—Zn1—O1—N1038.4 (4)
N9—Zn2—N2—C1106.03 (18)N1—Zn1—O1—N10147.1 (4)
N3—Zn2—N2—C2132.1 (2)O5—Zn1—O1—N1040.4 (4)
N6—Zn2—N2—C215.0 (2)N5—Zn1—O1—O4159.2 (5)
N9—Zn2—N2—C274.3 (2)N4—Zn1—O1—O427.6 (6)
N2—Zn2—N3—C9i56.5 (2)N1—Zn1—O1—O481.1 (5)
N6—Zn2—N3—C9i60.37 (18)O5—Zn1—O1—O4106.4 (7)
N9—Zn2—N3—C9i148.78 (16)O3—N10—O2—O612.4 (7)
N2—Zn2—N3—C8126.6 (2)O5—N10—O2—O6165.4 (7)
N6—Zn2—N3—C8116.5 (2)O4—N10—O2—O665.9 (12)
N9—Zn2—N3—C828.1 (2)O1—N10—O2—O6177.1 (6)
N5—Zn1—N4—C1168.46 (17)O3—N10—O2—O5153.0 (4)
N1—Zn1—N4—C144.8 (2)O4—N10—O2—O5128.7 (11)
O5—Zn1—N4—C174.0 (2)O6—N10—O2—O5165.4 (7)
O1—Zn1—N4—C145.7 (2)O1—N10—O2—O517.6 (4)
N5—Zn1—N4—C719.6 (2)O5—N10—O3—O4107.0 (11)
N1—Zn1—N4—C7127.07 (19)O6—N10—O3—O4138.9 (6)
O5—Zn1—N4—C7114.1 (2)O1—N10—O3—O440.8 (6)
O1—Zn1—N4—C7142.4 (2)O2—N10—O3—O4149.2 (6)
N4—Zn1—N5—C3175.44 (18)O5—N10—O3—O6114.0 (11)
N1—Zn1—N5—C341.3 (2)O4—N10—O3—O6138.9 (6)
O5—Zn1—N5—C370.8 (3)O1—N10—O3—O6179.7 (5)
O1—Zn1—N5—C348.9 (2)O2—N10—O3—O610.3 (6)
N4—Zn1—N5—C1612.3 (2)O5—N10—O4—O3149.5 (5)
N1—Zn1—N5—C16130.93 (19)O6—N10—O4—O342.0 (7)
O5—Zn1—N5—C16116.9 (3)O1—N10—O4—O3145.7 (5)
O1—Zn1—N5—C16138.8 (2)O2—N10—O4—O392.9 (11)
N2—Zn2—N6—C3ii133.67 (16)O3—N10—O4—O1145.7 (5)
N3—Zn2—N6—C3ii98.02 (16)O5—N10—O4—O13.8 (6)
N9—Zn2—N6—C3ii15.66 (15)O6—N10—O4—O1172.3 (6)
N2—Zn2—N6—C648.5 (3)O2—N10—O4—O1121.4 (10)
N3—Zn2—N6—C679.8 (3)O6—O3—O4—N1034.8 (4)
N9—Zn2—N6—C6166.5 (3)N10—O3—O4—O128.0 (4)
C2—N2—C1—N40.1 (3)O6—O3—O4—O162.7 (7)
Zn2—N2—C1—N4179.66 (15)O5—O1—O4—N104.2 (6)
C2—N2—C1—C5177.7 (2)Zn1—O1—O4—N1092.1 (6)
Zn2—N2—C1—C52.1 (3)O5—O1—O4—O334.3 (9)
C7—N4—C1—N20.0 (3)N10—O1—O4—O330.1 (4)
Zn1—N4—C1—N2173.36 (15)Zn1—O1—O4—O3122.2 (6)
C7—N4—C1—C5177.4 (2)O4—O1—O5—N103.7 (6)
Zn1—N4—C1—C59.2 (3)Zn1—O1—O5—N10141.3 (3)
N2—Zn2—N9—C15108.29 (17)N10—O1—O5—O218.7 (4)
N3—Zn2—N9—C1547.08 (19)O4—O1—O5—O215.0 (8)
N6—Zn2—N9—C15149.58 (18)Zn1—O1—O5—O2122.6 (5)
N2—Zn2—N9—C11130.50 (14)N10—O1—O5—Zn1141.3 (3)
N3—Zn2—N9—C1174.13 (16)O4—O1—O5—Zn1137.5 (5)
N6—Zn2—N9—C1128.38 (14)O3—N10—O5—O186.3 (10)
N2—Zn2—N9—C1313.91 (17)O4—N10—O5—O14.8 (7)
N3—Zn2—N9—C13169.28 (14)O6—N10—O5—O1172.7 (6)
N6—Zn2—N9—C1388.21 (15)O2—N10—O5—O1159.6 (5)
C1—N2—C2—C70.2 (3)O3—N10—O5—O2114.2 (10)
Zn2—N2—C2—C7179.52 (17)O4—N10—O5—O2154.8 (7)
C16—N5—C3—N6iii0.6 (3)O6—N10—O5—O213.1 (6)
Zn1—N5—C3—N6iii174.38 (15)O1—N10—O5—O2159.6 (5)
C16—N5—C3—C11iii177.3 (2)O3—N10—O5—Zn1143.2 (8)
Zn1—N5—C3—C11iii8.8 (3)O4—N10—O5—Zn152.1 (9)
C9—N1—C4—C8iv0.3 (3)O6—N10—O5—Zn1115.8 (7)
Zn1—N1—C4—C8iv175.00 (17)O1—N10—O5—Zn156.9 (5)
C17—N8—C5—C1169.44 (19)O2—N10—O5—Zn1102.7 (6)
C14—N8—C5—C171.4 (2)O6—O2—O5—O135.7 (10)
N2—C1—C5—N846.1 (3)N10—O2—O5—O121.1 (5)
N4—C1—C5—N8136.6 (2)O6—O2—O5—N1014.7 (7)
C3ii—N6—C6—C16ii0.3 (3)O6—O2—O5—Zn1136.5 (7)
Zn2—N6—C6—C16ii178.2 (2)N10—O2—O5—Zn1121.9 (4)
N2—C2—C7—N40.3 (3)N5—Zn1—O5—O1129.3 (4)
C1—N4—C7—C20.2 (3)N4—Zn1—O5—O1110.3 (4)
Zn1—N4—C7—C2173.11 (16)N1—Zn1—O5—O17.9 (5)
C9i—N3—C8—C4i0.6 (3)N5—Zn1—O5—N10179.5 (6)
Zn2—N3—C8—C4i177.79 (17)N4—Zn1—O5—N1060.0 (6)
C4—N1—C9—N3iv0.7 (3)N1—Zn1—O5—N1058.2 (7)
Zn1—N1—C9—N3iv176.01 (14)O1—Zn1—O5—N1050.3 (5)
C4—N1—C9—C12177.1 (2)N5—Zn1—O5—O2111.8 (5)
Zn1—N1—C9—C121.7 (3)N4—Zn1—O5—O28.7 (5)
C15—N9—C11—C3ii161.6 (2)N1—Zn1—O5—O2126.9 (4)
C13—N9—C11—C3ii78.2 (2)O1—Zn1—O5—O2118.9 (6)
Zn2—N9—C11—C3ii35.8 (2)O5—O2—O6—N1013.0 (6)
C18—N7—C12—C9169.90 (19)N10—O2—O6—O311.5 (6)
C10—N7—C12—C969.7 (2)O5—O2—O6—O31.5 (12)
N3iv—C9—C12—N7145.6 (2)O3—N10—O6—O2168.0 (7)
N1—C9—C12—N736.9 (3)O5—N10—O6—O216.3 (8)
C3—N5—C16—C6iii0.7 (3)O4—N10—O6—O2152.5 (7)
Zn1—N5—C16—C6iii174.34 (17)O1—N10—O6—O213 (2)
O3—N10—O1—O5147.6 (5)O5—N10—O6—O3151.7 (5)
O4—N10—O1—O5175.8 (6)O4—N10—O6—O339.5 (6)
O6—N10—O1—O534 (2)O1—N10—O6—O3179 (73)
O2—N10—O1—O522.2 (6)O2—N10—O6—O3168.0 (7)
O3—N10—O1—O436.6 (6)N10—O3—O6—O212.7 (7)
O5—N10—O1—O4175.8 (6)O4—O3—O6—O248.8 (10)
O6—N10—O1—O4142 (2)O4—O3—O6—N1036.1 (5)
O2—N10—O1—O4153.6 (6)
Symmetry codes: (i) xy+1, x, z+1/6; (ii) xy, x, z+1/6; (iii) y, x+y, z1/6; (iv) y, x+y+1, z1/6.
 

Acknowledgements

Financial support from JSPS Grant-in-Aid for Scientific Research No. 26810037 is gratefully acknowledged.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). SIR2002. University of Bari, Italy.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218–224.  CrossRef Google Scholar
First citationPark, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2006). PNAS, 103, 10186–10191.  CSD CrossRef PubMed CAS Google Scholar
First citationQuan, M. L., Lam, P. Y. S., Han, Q., Pinto, D. J. P., He, M. Y., Li, R., Ellis, C. D., Clark, C. G., Teleha, C. A., Sun, J.-H., Alexander, R. S., Bai, S., Luettgen, J. M., Knabb, R. M., Wong, P. C. & Wexler, R. R. (2005). J. Med. Chem. 48, 1729–1744.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds