organic compounds
1-[(E)-(3-Hydroxy-4-methoxybenzylidene)amino]-3-methylthiourea
aThe School of Chemical Sciences, Universiti Sains Malaysia (USM), Minden 1800, Penang, Malaysia
*Correspondence e-mail: farookdr@gmail.com
In the title thiosemicarbazone Schiff base compound, C10H13N3O2S, the dihedral angle between the benzene ring and methyl carbothioamide side arm was found to be 17.4 (4)°. The presence of two intramolecular hydrogen bonds is noted, namely hydroxy-O—H⋯O(methoxy) and amine-N—H⋯N(imine). In the crystal, pairwise amine-N—H⋯S hydrogen bonds give rise to centrosymmetric {⋯HNCS}2 synthons, which lead to dimeric aggregates.
Keywords: crystal structure; carbothioamide; Schiff base; hydrogen bonding.
CCDC reference: 1411362
Structure description
The molecule of the title compound (Fig. 1) is not completely planar, as indicated by the dihedral angle of 17.4 (4)° between the benzene ring and carbothioamide side chain. The crystal packing is reinforced by pairwise N—H⋯S hydrogen bonds, which connect molecules into dimeric aggregates, Fig. 2 and Table 1.
Similar structures of carbothioamide Schiff base compounds have been reported (Qasem Ali et al., 2012; Tayamon et al., 2012; Li, 2010; Shankara et al., 2013; Adam et al., 2015; de Oliveira et al., 2015). These molecules can coordinate metals in neutral and deprotonated forms, leading to biologically active species (Zhang et al., 2011).
Synthesis and crystallization
3-Hydroxy-4-methoxybenzaldehyde (0.761 g, 5 mmol) was dissolved in methanol (20 ml). Then, glacial acetic acid (0.2 ml) was added, followed by refluxing for 30 min. Separately, N-methylhydrazinecarbothioamide (0.526 g, 5 mmol) was dissolved in methanol (15 ml) and the solution was added dropwise with stirring to the aldehyde solution. The resulting colourless solution was refluxed for 4 h. The product was filtered and dried under reduced pressure overnight and washed with a mixture of methanol and n-hexane (1:3). The recovered product was recrystallized from methanol solution to yield colourless crystals suitable for X-ray diffraction. Yield: 95%; M.p: 512–513 K.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1411362
https://doi.org/10.1107/S2414314616015996/tk4022sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616015996/tk4022Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616015996/tk4022sup3.docx
Supporting information file. DOI: https://doi.org/10.1107/S2414314616015996/tk4022Isup4.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).C10H13N3O2S | F(000) = 504 |
Mr = 239.29 | Dx = 1.366 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4893 (13) Å | Cell parameters from 5445 reflections |
b = 13.5903 (19) Å | θ = 2.6–27.0° |
c = 9.0554 (12) Å | µ = 0.27 mm−1 |
β = 94.896 (2)° | T = 100 K |
V = 1163.5 (3) Å3 | Block, colourless |
Z = 4 | 0.41 × 0.27 × 0.18 mm |
Bruker APEXII CCD diffractometer | Rint = 0.045 |
φ and ω scans | θmax = 30.2°, θmin = 2.2° |
25305 measured reflections | h = −13→13 |
3429 independent reflections | k = −19→19 |
2573 reflections with I > 2σ(I) | l = −12→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.121 | w = 1/[σ2(Fo2) + (0.0492P)2 + 0.4456P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3429 reflections | Δρmax = 0.33 e Å−3 |
159 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.17921 (5) | 0.60009 (3) | −0.56327 (4) | 0.04224 (14) | |
O1 | 0.39288 (13) | 0.61470 (9) | 0.46152 (13) | 0.0438 (3) | |
O2 | 0.51572 (14) | 0.51474 (12) | 0.25548 (15) | 0.0540 (4) | |
N1 | 0.01610 (15) | 0.61303 (10) | −0.16455 (14) | 0.0362 (3) | |
N2 | −0.02765 (16) | 0.58746 (11) | −0.30889 (16) | 0.0392 (3) | |
N3 | −0.19422 (16) | 0.70885 (11) | −0.32064 (17) | 0.0419 (3) | |
C1 | 0.11997 (17) | 0.63490 (12) | 0.14732 (18) | 0.0375 (3) | |
H1A | 0.0295 | 0.6629 | 0.1217 | 0.045* | |
C2 | 0.18498 (18) | 0.64841 (12) | 0.28869 (18) | 0.0380 (4) | |
H2A | 0.1391 | 0.6854 | 0.3596 | 0.046* | |
C3 | 0.31735 (17) | 0.60775 (11) | 0.32641 (16) | 0.0334 (3) | |
C4 | 0.38462 (17) | 0.55389 (12) | 0.22168 (17) | 0.0352 (3) | |
C5 | 0.31840 (17) | 0.53995 (12) | 0.08188 (17) | 0.0359 (3) | |
H5A | 0.3636 | 0.5021 | 0.0114 | 0.043* | |
C6 | 0.18565 (16) | 0.58084 (11) | 0.04272 (17) | 0.0328 (3) | |
C7 | 0.12370 (18) | 0.56569 (12) | −0.10845 (18) | 0.0369 (3) | |
H7A | 0.1655 | 0.5182 | −0.1681 | 0.044* | |
C8 | −0.13334 (16) | 0.63533 (11) | −0.38644 (17) | 0.0334 (3) | |
C9 | −0.3040 (2) | 0.77017 (18) | −0.3935 (3) | 0.0679 (7) | |
H9A | −0.3534 | 0.8053 | −0.3187 | 0.102* | |
H9B | −0.3715 | 0.7289 | −0.4534 | 0.102* | |
H9C | −0.2615 | 0.8179 | −0.4576 | 0.102* | |
C10 | 0.3315 (2) | 0.66986 (15) | 0.57408 (19) | 0.0497 (5) | |
H10A | 0.3935 | 0.6667 | 0.6662 | 0.075* | |
H10B | 0.2389 | 0.6421 | 0.5907 | 0.075* | |
H10C | 0.3201 | 0.7386 | 0.5425 | 0.075* | |
H1N2 | 0.013 (2) | 0.5400 (15) | −0.352 (2) | 0.046 (5)* | |
H1N3 | −0.162 (2) | 0.7251 (16) | −0.234 (2) | 0.051 (6)* | |
H1O2 | 0.542 (3) | 0.5280 (18) | 0.345 (3) | 0.069 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0469 (3) | 0.0460 (2) | 0.0318 (2) | 0.00772 (18) | −0.00814 (17) | −0.00491 (16) |
O1 | 0.0449 (7) | 0.0545 (7) | 0.0308 (6) | 0.0104 (6) | −0.0032 (5) | −0.0084 (5) |
O2 | 0.0429 (7) | 0.0768 (10) | 0.0400 (7) | 0.0263 (7) | −0.0101 (6) | −0.0146 (6) |
N1 | 0.0384 (7) | 0.0378 (7) | 0.0310 (6) | −0.0014 (5) | −0.0052 (5) | −0.0004 (5) |
N2 | 0.0431 (8) | 0.0402 (7) | 0.0325 (7) | 0.0075 (6) | −0.0081 (6) | −0.0037 (6) |
N3 | 0.0404 (8) | 0.0465 (8) | 0.0370 (7) | 0.0071 (6) | −0.0071 (6) | −0.0097 (6) |
C1 | 0.0308 (8) | 0.0407 (8) | 0.0408 (8) | 0.0046 (6) | 0.0014 (6) | 0.0026 (7) |
C2 | 0.0373 (8) | 0.0417 (8) | 0.0357 (8) | 0.0057 (7) | 0.0064 (6) | −0.0027 (6) |
C3 | 0.0350 (8) | 0.0360 (8) | 0.0289 (7) | 0.0010 (6) | 0.0004 (6) | −0.0009 (6) |
C4 | 0.0314 (8) | 0.0395 (8) | 0.0340 (8) | 0.0063 (6) | −0.0008 (6) | −0.0013 (6) |
C5 | 0.0373 (8) | 0.0381 (8) | 0.0319 (7) | 0.0047 (6) | 0.0005 (6) | −0.0040 (6) |
C6 | 0.0328 (8) | 0.0324 (7) | 0.0324 (7) | −0.0019 (6) | −0.0021 (6) | 0.0023 (6) |
C7 | 0.0388 (8) | 0.0358 (8) | 0.0349 (8) | 0.0014 (6) | −0.0032 (6) | −0.0012 (6) |
C8 | 0.0323 (8) | 0.0337 (7) | 0.0333 (7) | −0.0029 (6) | −0.0024 (6) | 0.0011 (6) |
C9 | 0.0590 (13) | 0.0712 (14) | 0.0689 (14) | 0.0316 (11) | −0.0215 (11) | −0.0248 (11) |
C10 | 0.0649 (12) | 0.0499 (10) | 0.0345 (8) | 0.0086 (9) | 0.0041 (8) | −0.0075 (7) |
S1—C8 | 1.6923 (16) | C2—C3 | 1.388 (2) |
O1—C3 | 1.3675 (18) | C2—H2A | 0.9500 |
O1—C10 | 1.429 (2) | C3—C4 | 1.395 (2) |
O2—C4 | 1.3636 (19) | C4—C5 | 1.377 (2) |
O2—H1O2 | 0.85 (2) | C5—C6 | 1.395 (2) |
N1—C7 | 1.275 (2) | C5—H5A | 0.9500 |
N1—N2 | 1.3816 (18) | C6—C7 | 1.458 (2) |
N2—C8 | 1.342 (2) | C7—H7A | 0.9500 |
N2—H1N2 | 0.86 (2) | C9—H9A | 0.9800 |
N3—C8 | 1.321 (2) | C9—H9B | 0.9800 |
N3—C9 | 1.448 (2) | C9—H9C | 0.9800 |
N3—H1N3 | 0.85 (2) | C10—H10A | 0.9800 |
C1—C2 | 1.385 (2) | C10—H10B | 0.9800 |
C1—C6 | 1.388 (2) | C10—H10C | 0.9800 |
C1—H1A | 0.9500 | ||
C3—O1—C10 | 117.40 (13) | C6—C5—H5A | 119.7 |
C4—O2—H1O2 | 108.9 (17) | C1—C6—C5 | 119.07 (14) |
C7—N1—N2 | 114.56 (14) | C1—C6—C7 | 123.17 (14) |
C8—N2—N1 | 121.58 (14) | C5—C6—C7 | 117.75 (14) |
C8—N2—H1N2 | 118.1 (13) | N1—C7—C6 | 123.22 (15) |
N1—N2—H1N2 | 120.3 (13) | N1—C7—H7A | 118.4 |
C8—N3—C9 | 123.71 (15) | C6—C7—H7A | 118.4 |
C8—N3—H1N3 | 118.7 (14) | N3—C8—N2 | 117.80 (14) |
C9—N3—H1N3 | 117.3 (14) | N3—C8—S1 | 123.62 (12) |
C2—C1—C6 | 120.69 (15) | N2—C8—S1 | 118.57 (13) |
C2—C1—H1A | 119.7 | N3—C9—H9A | 109.5 |
C6—C1—H1A | 119.7 | N3—C9—H9B | 109.5 |
C1—C2—C3 | 119.80 (15) | H9A—C9—H9B | 109.5 |
C1—C2—H2A | 120.1 | N3—C9—H9C | 109.5 |
C3—C2—H2A | 120.1 | H9A—C9—H9C | 109.5 |
O1—C3—C2 | 125.93 (14) | H9B—C9—H9C | 109.5 |
O1—C3—C4 | 114.16 (14) | O1—C10—H10A | 109.5 |
C2—C3—C4 | 119.91 (14) | O1—C10—H10B | 109.5 |
O2—C4—C5 | 119.24 (14) | H10A—C10—H10B | 109.5 |
O2—C4—C3 | 120.91 (14) | O1—C10—H10C | 109.5 |
C5—C4—C3 | 119.85 (14) | H10A—C10—H10C | 109.5 |
C4—C5—C6 | 120.67 (14) | H10B—C10—H10C | 109.5 |
C4—C5—H5A | 119.7 | ||
C7—N1—N2—C8 | −175.40 (16) | C2—C1—C6—C5 | 0.1 (2) |
C6—C1—C2—C3 | 0.1 (3) | C2—C1—C6—C7 | −178.82 (15) |
C10—O1—C3—C2 | −0.9 (2) | C4—C5—C6—C1 | −0.8 (2) |
C10—O1—C3—C4 | 179.23 (15) | C4—C5—C6—C7 | 178.14 (15) |
C1—C2—C3—O1 | −179.53 (15) | N2—N1—C7—C6 | −179.36 (15) |
C1—C2—C3—C4 | 0.3 (3) | C1—C6—C7—N1 | 11.6 (3) |
O1—C3—C4—O2 | −1.3 (2) | C5—C6—C7—N1 | −167.35 (16) |
C2—C3—C4—O2 | 178.84 (16) | C9—N3—C8—N2 | 176.56 (19) |
O1—C3—C4—C5 | 178.83 (15) | C9—N3—C8—S1 | −2.2 (3) |
C2—C3—C4—C5 | −1.0 (2) | N1—N2—C8—N3 | 0.5 (2) |
O2—C4—C5—C6 | −178.58 (15) | N1—N2—C8—S1 | 179.36 (12) |
C3—C4—C5—C6 | 1.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O2···O1 | 0.85 (3) | 2.18 (3) | 2.6564 (19) | 115 (2) |
N3—H1N3···N1 | 0.847 (19) | 2.32 (2) | 2.682 (2) | 106.1 (16) |
N2—H1N2···S1i | 0.86 (2) | 2.63 (2) | 3.4753 (16) | 167.8 (16) |
N3—H1N3···S1ii | 0.847 (19) | 2.85 (2) | 3.4839 (16) | 133.5 (17) |
Symmetry codes: (i) −x, −y+1, −z−1; (ii) x, −y+3/2, z+1/2. |
Acknowledgements
The research was supported financially by RU grant 1001/PKIMIA/811269 from Universiti Sains Malaysia (USM). The authors wish to thank USM and The World Academy of Science for a TWAS–USM fellowship to MdAA. MdAA also wishes to acknowledge Shahjalal University of Science and Technology, Sylhet, Bangladesh, for study leave.
References
Adam, F., Arafath, M. A., Haque, R. A. & Razali, M. R. (2015). Acta Cryst. E71, o819. CrossRef IUCr Journals Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Li, Y.-F. (2010). Acta Cryst. E66, o2728. CrossRef IUCr Journals Google Scholar
Oliveira, A. B. de, Beck, J., Landvogt, C., Feitosa, B. R. S. & Rocha, F. V. (2015). Acta Cryst. E71, o33–o34. CrossRef IUCr Journals Google Scholar
Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012). Acta Cryst. E68, o964–o965. CrossRef IUCr Journals Google Scholar
Shankara, B. S., Shashidhar, N., Patil, Y. P., Krishna, P. M. & Nethaji, M. (2013). Acta Cryst. E69, o61. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tayamon, S., Mazlan, N. A., Ravoof, T. B. S. A., Mohamed Tahir, M. I. & Crouse, K. A. (2012). Acta Cryst. E68, o3104–o3105. CrossRef IUCr Journals Google Scholar
Zhang, H. J., Qian, Y., Zhu, D. D., Yang, X. G. & Zhu, H. L. (2011). Eur. J. Med. Chem. 46, 4702–4708. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.