organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-[(E)-(3-Hy­dr­oxy-4-meth­­oxy­benzyl­­idene)amino]-3-methyl­thio­urea

CROSSMARK_Color_square_no_text.svg

aThe School of Chemical Sciences, Universiti Sains Malaysia (USM), Minden 1800, Penang, Malaysia
*Correspondence e-mail: farookdr@gmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 3 October 2016; accepted 10 October 2016; online 15 October 2016)

In the title thio­semicarbazone Schiff base compound, C10H13N3O2S, the dihedral angle between the benzene ring and methyl carbo­thio­amide side arm was found to be 17.4 (4)°. The presence of two intra­molecular hydrogen bonds is noted, namely hy­droxy-OHO(meth­oxy) and amine-NHN(imine). In the crystal, pairwise amine-N—H⋯S hydrogen bonds give rise to centrosymmetric {⋯HNCS}2 synthons, which lead to dimeric aggregates.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecule of the title compound (Fig. 1[link]) is not completely planar, as indicated by the dihedral angle of 17.4 (4)° between the benzene ring and carbo­thio­amide side chain. The crystal packing is reinforced by pairwise N—H⋯S hydrogen bonds, which connect mol­ecules into dimeric aggregates, Fig. 2[link] and Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1 0.85 (3) 2.18 (3) 2.6564 (19) 115 (2)
N3—H1N3⋯N1 0.847 (19) 2.32 (2) 2.682 (2) 106.1 (16)
N2—H1N2⋯S1i 0.86 (2) 2.63 (2) 3.4753 (16) 167.8 (16)
N3—H1N3⋯S1ii 0.847 (19) 2.85 (2) 3.4839 (16) 133.5 (17)
Symmetry codes: (i) -x, -y+1, -z-1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The intramolecular O—H⋯O hydrogen bond should be shown
[Figure 2]
Figure 2
The packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Similar structures of carbo­thio­amide Schiff base compounds have been reported (Qasem Ali et al., 2012[Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012). Acta Cryst. E68, o964-o965.]; Tayamon et al., 2012[Tayamon, S., Mazlan, N. A., Ravoof, T. B. S. A., Mohamed Tahir, M. I. & Crouse, K. A. (2012). Acta Cryst. E68, o3104-o3105.]; Li, 2010[Li, Y.-F. (2010). Acta Cryst. E66, o2728.]; Shankara et al., 2013[Shankara, B. S., Shashidhar, N., Patil, Y. P., Krishna, P. M. & Nethaji, M. (2013). Acta Cryst. E69, o61.]; Adam et al., 2015[Adam, F., Arafath, M. A., Haque, R. A. & Razali, M. R. (2015). Acta Cryst. E71, o819.]; de Oliveira et al., 2015[Oliveira, A. B. de, Beck, J., Landvogt, C., Feitosa, B. R. S. & Rocha, F. V. (2015). Acta Cryst. E71, o33-o34.]). These mol­ecules can coordinate metals in neutral and deprotonated forms, leading to biologically active species (Zhang et al., 2011[Zhang, H. J., Qian, Y., Zhu, D. D., Yang, X. G. & Zhu, H. L. (2011). Eur. J. Med. Chem. 46, 4702-4708.]).

Synthesis and crystallization

3-Hy­droxy-4-meth­oxy­benzaldehyde (0.761 g, 5 mmol) was dissolved in methanol (20 ml). Then, glacial acetic acid (0.2 ml) was added, followed by refluxing for 30 min. Separately, N-methyl­hydrazinecarbo­thio­amide (0.526 g, 5 mmol) was dissolved in methanol (15 ml) and the solution was added dropwise with stirring to the aldehyde solution. The resulting colourless solution was refluxed for 4 h. The product was filtered and dried under reduced pressure overnight and washed with a mixture of methanol and n-hexane (1:3). The recovered product was recrystallized from methanol solution to yield colourless crystals suitable for X-ray diffraction. Yield: 95%; M.p: 512–513 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H13N3O2S
Mr 239.29
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.4893 (13), 13.5903 (19), 9.0554 (12)
β (°) 94.896 (2)
V3) 1163.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.41 × 0.27 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 25305, 3429, 2573
Rint 0.045
(sin θ/λ)max−1) 0.707
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.121, 1.06
No. of reflections 3429
No. of parameters 159
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

1-[(E)-(3-Hydroxy-4-methoxybenzylidene)amino]-3-methylthiourea top
Crystal data top
C10H13N3O2SF(000) = 504
Mr = 239.29Dx = 1.366 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4893 (13) ÅCell parameters from 5445 reflections
b = 13.5903 (19) Åθ = 2.6–27.0°
c = 9.0554 (12) ŵ = 0.27 mm1
β = 94.896 (2)°T = 100 K
V = 1163.5 (3) Å3Block, colourless
Z = 40.41 × 0.27 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.045
φ and ω scansθmax = 30.2°, θmin = 2.2°
25305 measured reflectionsh = 1313
3429 independent reflectionsk = 1919
2573 reflections with I > 2σ(I)l = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.4456P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3429 reflectionsΔρmax = 0.33 e Å3
159 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17921 (5)0.60009 (3)0.56327 (4)0.04224 (14)
O10.39288 (13)0.61470 (9)0.46152 (13)0.0438 (3)
O20.51572 (14)0.51474 (12)0.25548 (15)0.0540 (4)
N10.01610 (15)0.61303 (10)0.16455 (14)0.0362 (3)
N20.02765 (16)0.58746 (11)0.30889 (16)0.0392 (3)
N30.19422 (16)0.70885 (11)0.32064 (17)0.0419 (3)
C10.11997 (17)0.63490 (12)0.14732 (18)0.0375 (3)
H1A0.02950.66290.12170.045*
C20.18498 (18)0.64841 (12)0.28869 (18)0.0380 (4)
H2A0.13910.68540.35960.046*
C30.31735 (17)0.60775 (11)0.32641 (16)0.0334 (3)
C40.38462 (17)0.55389 (12)0.22168 (17)0.0352 (3)
C50.31840 (17)0.53995 (12)0.08188 (17)0.0359 (3)
H5A0.36360.50210.01140.043*
C60.18565 (16)0.58084 (11)0.04272 (17)0.0328 (3)
C70.12370 (18)0.56569 (12)0.10845 (18)0.0369 (3)
H7A0.16550.51820.16810.044*
C80.13334 (16)0.63533 (11)0.38644 (17)0.0334 (3)
C90.3040 (2)0.77017 (18)0.3935 (3)0.0679 (7)
H9A0.35340.80530.31870.102*
H9B0.37150.72890.45340.102*
H9C0.26150.81790.45760.102*
C100.3315 (2)0.66986 (15)0.57408 (19)0.0497 (5)
H10A0.39350.66670.66620.075*
H10B0.23890.64210.59070.075*
H10C0.32010.73860.54250.075*
H1N20.013 (2)0.5400 (15)0.352 (2)0.046 (5)*
H1N30.162 (2)0.7251 (16)0.234 (2)0.051 (6)*
H1O20.542 (3)0.5280 (18)0.345 (3)0.069 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0469 (3)0.0460 (2)0.0318 (2)0.00772 (18)0.00814 (17)0.00491 (16)
O10.0449 (7)0.0545 (7)0.0308 (6)0.0104 (6)0.0032 (5)0.0084 (5)
O20.0429 (7)0.0768 (10)0.0400 (7)0.0263 (7)0.0101 (6)0.0146 (6)
N10.0384 (7)0.0378 (7)0.0310 (6)0.0014 (5)0.0052 (5)0.0004 (5)
N20.0431 (8)0.0402 (7)0.0325 (7)0.0075 (6)0.0081 (6)0.0037 (6)
N30.0404 (8)0.0465 (8)0.0370 (7)0.0071 (6)0.0071 (6)0.0097 (6)
C10.0308 (8)0.0407 (8)0.0408 (8)0.0046 (6)0.0014 (6)0.0026 (7)
C20.0373 (8)0.0417 (8)0.0357 (8)0.0057 (7)0.0064 (6)0.0027 (6)
C30.0350 (8)0.0360 (8)0.0289 (7)0.0010 (6)0.0004 (6)0.0009 (6)
C40.0314 (8)0.0395 (8)0.0340 (8)0.0063 (6)0.0008 (6)0.0013 (6)
C50.0373 (8)0.0381 (8)0.0319 (7)0.0047 (6)0.0005 (6)0.0040 (6)
C60.0328 (8)0.0324 (7)0.0324 (7)0.0019 (6)0.0021 (6)0.0023 (6)
C70.0388 (8)0.0358 (8)0.0349 (8)0.0014 (6)0.0032 (6)0.0012 (6)
C80.0323 (8)0.0337 (7)0.0333 (7)0.0029 (6)0.0024 (6)0.0011 (6)
C90.0590 (13)0.0712 (14)0.0689 (14)0.0316 (11)0.0215 (11)0.0248 (11)
C100.0649 (12)0.0499 (10)0.0345 (8)0.0086 (9)0.0041 (8)0.0075 (7)
Geometric parameters (Å, º) top
S1—C81.6923 (16)C2—C31.388 (2)
O1—C31.3675 (18)C2—H2A0.9500
O1—C101.429 (2)C3—C41.395 (2)
O2—C41.3636 (19)C4—C51.377 (2)
O2—H1O20.85 (2)C5—C61.395 (2)
N1—C71.275 (2)C5—H5A0.9500
N1—N21.3816 (18)C6—C71.458 (2)
N2—C81.342 (2)C7—H7A0.9500
N2—H1N20.86 (2)C9—H9A0.9800
N3—C81.321 (2)C9—H9B0.9800
N3—C91.448 (2)C9—H9C0.9800
N3—H1N30.85 (2)C10—H10A0.9800
C1—C21.385 (2)C10—H10B0.9800
C1—C61.388 (2)C10—H10C0.9800
C1—H1A0.9500
C3—O1—C10117.40 (13)C6—C5—H5A119.7
C4—O2—H1O2108.9 (17)C1—C6—C5119.07 (14)
C7—N1—N2114.56 (14)C1—C6—C7123.17 (14)
C8—N2—N1121.58 (14)C5—C6—C7117.75 (14)
C8—N2—H1N2118.1 (13)N1—C7—C6123.22 (15)
N1—N2—H1N2120.3 (13)N1—C7—H7A118.4
C8—N3—C9123.71 (15)C6—C7—H7A118.4
C8—N3—H1N3118.7 (14)N3—C8—N2117.80 (14)
C9—N3—H1N3117.3 (14)N3—C8—S1123.62 (12)
C2—C1—C6120.69 (15)N2—C8—S1118.57 (13)
C2—C1—H1A119.7N3—C9—H9A109.5
C6—C1—H1A119.7N3—C9—H9B109.5
C1—C2—C3119.80 (15)H9A—C9—H9B109.5
C1—C2—H2A120.1N3—C9—H9C109.5
C3—C2—H2A120.1H9A—C9—H9C109.5
O1—C3—C2125.93 (14)H9B—C9—H9C109.5
O1—C3—C4114.16 (14)O1—C10—H10A109.5
C2—C3—C4119.91 (14)O1—C10—H10B109.5
O2—C4—C5119.24 (14)H10A—C10—H10B109.5
O2—C4—C3120.91 (14)O1—C10—H10C109.5
C5—C4—C3119.85 (14)H10A—C10—H10C109.5
C4—C5—C6120.67 (14)H10B—C10—H10C109.5
C4—C5—H5A119.7
C7—N1—N2—C8175.40 (16)C2—C1—C6—C50.1 (2)
C6—C1—C2—C30.1 (3)C2—C1—C6—C7178.82 (15)
C10—O1—C3—C20.9 (2)C4—C5—C6—C10.8 (2)
C10—O1—C3—C4179.23 (15)C4—C5—C6—C7178.14 (15)
C1—C2—C3—O1179.53 (15)N2—N1—C7—C6179.36 (15)
C1—C2—C3—C40.3 (3)C1—C6—C7—N111.6 (3)
O1—C3—C4—O21.3 (2)C5—C6—C7—N1167.35 (16)
C2—C3—C4—O2178.84 (16)C9—N3—C8—N2176.56 (19)
O1—C3—C4—C5178.83 (15)C9—N3—C8—S12.2 (3)
C2—C3—C4—C51.0 (2)N1—N2—C8—N30.5 (2)
O2—C4—C5—C6178.58 (15)N1—N2—C8—S1179.36 (12)
C3—C4—C5—C61.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O10.85 (3)2.18 (3)2.6564 (19)115 (2)
N3—H1N3···N10.847 (19)2.32 (2)2.682 (2)106.1 (16)
N2—H1N2···S1i0.86 (2)2.63 (2)3.4753 (16)167.8 (16)
N3—H1N3···S1ii0.847 (19)2.85 (2)3.4839 (16)133.5 (17)
Symmetry codes: (i) x, y+1, z1; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

The research was supported financially by RU grant 1001/PKIMIA/811269 from Universiti Sains Malaysia (USM). The authors wish to thank USM and The World Academy of Science for a TWAS–USM fellowship to MdAA. MdAA also wishes to acknowledge Shahjalal University of Science and Technology, Sylhet, Bangladesh, for study leave.

References

First citationAdam, F., Arafath, M. A., Haque, R. A. & Razali, M. R. (2015). Acta Cryst. E71, o819.  CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F. (2010). Acta Cryst. E66, o2728.  CrossRef IUCr Journals Google Scholar
First citationOliveira, A. B. de, Beck, J., Landvogt, C., Feitosa, B. R. S. & Rocha, F. V. (2015). Acta Cryst. E71, o33–o34.  CrossRef IUCr Journals Google Scholar
First citationQasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012). Acta Cryst. E68, o964–o965.  CrossRef IUCr Journals Google Scholar
First citationShankara, B. S., Shashidhar, N., Patil, Y. P., Krishna, P. M. & Nethaji, M. (2013). Acta Cryst. E69, o61.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTayamon, S., Mazlan, N. A., Ravoof, T. B. S. A., Mohamed Tahir, M. I. & Crouse, K. A. (2012). Acta Cryst. E68, o3104–o3105.  CrossRef IUCr Journals Google Scholar
First citationZhang, H. J., Qian, Y., Zhu, D. D., Yang, X. G. & Zhu, H. L. (2011). Eur. J. Med. Chem. 46, 4702–4708.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds