organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl 2-phenyl­quinoline-4-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and eDepartment of Chemistry, College of Education, Tikrit University, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 20 September 2016; accepted 22 September 2016; online 7 October 2016)

The asymmetric unit of the title compound, C17H13NO2, contains two independent mol­ecules which differ primarily in the rotational orientation of the pendant phenyl group, being conrotatory, with respect to the plane of the quinoline moiety. In the crystal, the mol­ecules form stacks parallel to the b axis through ππ stacking inter­actions of the heterocyclic rings [shortest inter-centroid distance = 3.5775 (8) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoline-4-carb­oxy­lic acids have a variety of medicinal effects and are applied as active components in industrial anti­oxidants (Wang et al., 2009[Wang, L.., Hu, L., Chen, H.., Sui, Y.. & Shen, W. (2009). J. Fluorine Chem. 130, 406-409.]). Cincophene, named 2-phenyl­quinoline-4-carb­oxy­lic acid, has been proven to be a powerful anti­microbial agent (Wadher et al., 2009[Wadher, S. J., Karande, N. A., Brokar, D. S. & Yeole, P. G. (2009). Int. J. ChemTech Res. 1, 1297-1302.]). Cinchophen has been used as an anti­rheumatic agent for more than 60 years (Abd El-Aal & El-Emary, 2014[Abd El-Aal, H. A. K. & El-Emary, T. I. (2014). J. Chem. Pharm. Res. 6, 90-99.]). Moreover, cinchophen is shown to exert remarkable biological activity (Kaila et al., 2007[Kaila, N., Janz, K., Huang, A., Moretto, A., DeBernardo, S., Bedard, P. W., Tam, S., Clerin, V. Jr, Keith, J. C., Tsao, H. H., Sushkova, N., Shaw, G. D., Camphausen, R. T., Schaub, R. G. & Wang, Q. (2007). J. Med. Chem. 50, 40-64.]; Deady et al., 2000[Deady, L. W., Desneves, J. A., Kaye, J., Finlay, G. J., Baguley, B. C. & Denny, W. A. (2000). Bioorg. Med. Chem. 8, 977-984.]) and has been proven to be a powerful analgesic, anti­microbial and anti­fungal agent (Metwally et al., 2010[Metwally, M. A., Abdel-Wahab, B. F. & El-Hiti, G. A. (2010). Curr. Org. Chem. 14, 48-64.]). As part of our studies in this area, the title compound has been synthesized to be used a precursor for further cincophene derivatives.

The asymmetric unit of the title compound contains two independent mol­ecules, which differ primarily in the rotational orientation of the pendant phenyl group with respect to the plane of the quinoline moiety, Fig. 1[link]. The dihedral angle between the N1/C1/C6–C9 and C12–C17 planes is 17.00 (6)° while that between the N2/C18/C23–C26 and C29–C34 planes is 16.63 (7)° in the opposite direction. Each asymmetric unit inter­acts with the one above it and one below it along the b-axis direction through ππ stacking of the heterocyclic rings, Fig. 2[link]. In these, the distance between the centers of gravity of the heterocycles is 3.5775 (8) Å and the dihedral angle between the the rings is 4.59 (7)°.

[Figure 1]
Figure 1
The asymmetric unit with labeling scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
Packing viewed along the b axis.

Synthesis and crystallization

A mixture of 2-phenyl­quinoline-4-carb­oxy­lic acid (0.03 mol), methanol (20 ml) and concentrated sulfuric acid (3 ml) was refluxed for 6 h, then and cooled to room temperature. Sodium carbonate solution was added to neutralize the mixture which was then left to stand for 1 h at room temperature. Pale-yellow crystals were precipitated and washed with distilled water then recrystallized from ethanol solution to afford the title compound in 50% yield; m.p. 332 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C17H13NO2
Mr 263.28
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 11.5383 (7), 7.9873 (5), 28.3149 (19)
β (°) 90.525 (3)
V3) 2609.4 (3)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.71
Crystal size (mm) 0.23 × 0.18 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.90, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 19441, 5118, 4152
Rint 0.043
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 1.04
No. of reflections 5118
No. of parameters 466
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.28, −0.18
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Methyl 2-phenylquinoline-4-carboxylate top
Crystal data top
C17H13NO2F(000) = 1104
Mr = 263.28Dx = 1.340 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 11.5383 (7) ÅCell parameters from 9981 reflections
b = 7.9873 (5) Åθ = 4.1–72.4°
c = 28.3149 (19) ŵ = 0.71 mm1
β = 90.525 (3)°T = 150 K
V = 2609.4 (3) Å3Plate, pale-yellow
Z = 80.23 × 0.18 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
5118 independent reflections
Radiation source: INCOATEC IµS micro-focus source4152 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.043
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 3.1°
ω scansh = 1214
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 99
Tmin = 0.90, Tmax = 0.99l = 3234
19441 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043All H-atom parameters refined
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.055P)2 + 0.6267P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5118 reflectionsΔρmax = 0.28 e Å3
466 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00105 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01888 (10)0.89113 (17)0.60650 (4)0.0478 (3)
O20.12589 (9)0.75224 (14)0.65997 (4)0.0379 (3)
H20.4531 (18)1.185 (2)0.5026 (7)0.051 (5)*
N10.44689 (11)1.04777 (16)0.58249 (4)0.0332 (3)
C10.35355 (13)1.06996 (18)0.55306 (5)0.0314 (3)
C20.37379 (14)1.1544 (2)0.50991 (5)0.0360 (3)
C30.28477 (15)1.1895 (2)0.47961 (6)0.0403 (4)
H30.3011 (16)1.253 (2)0.4509 (7)0.047 (5)*
C40.17146 (15)1.1382 (2)0.49094 (6)0.0414 (4)
H40.1074 (17)1.166 (2)0.4676 (7)0.050 (5)*
C50.14937 (14)1.0531 (2)0.53144 (6)0.0373 (4)
H50.0658 (17)1.015 (2)0.5386 (7)0.049 (5)*
C60.23973 (13)1.01572 (17)0.56423 (5)0.0299 (3)
C70.22671 (12)0.92727 (18)0.60774 (5)0.0300 (3)
C80.32219 (13)0.90581 (18)0.63663 (5)0.0309 (3)
H80.3147 (12)0.8488 (18)0.6653 (5)0.016 (3)*
C90.43156 (12)0.97042 (18)0.62335 (5)0.0302 (3)
C100.11265 (13)0.85839 (19)0.62339 (5)0.0333 (3)
C110.02004 (16)0.6797 (2)0.67742 (7)0.0460 (4)
H11A0.0240 (18)0.625 (3)0.6503 (8)0.057 (6)*
H11B0.0484 (19)0.587 (3)0.7019 (8)0.061 (6)*
H11C0.0297 (18)0.768 (3)0.6918 (7)0.061 (6)*
C120.53541 (12)0.95654 (19)0.65488 (5)0.0321 (3)
C130.52674 (14)0.9197 (2)0.70269 (6)0.0398 (4)
H130.4511 (17)0.901 (2)0.7169 (7)0.046 (5)*
C140.62524 (15)0.9116 (3)0.73115 (6)0.0471 (4)
H140.6190 (17)0.885 (3)0.7639 (7)0.055 (6)*
C150.73415 (14)0.9400 (3)0.71248 (6)0.0461 (4)
H150.8035 (18)0.937 (3)0.7324 (7)0.057 (6)*
C160.74342 (14)0.9749 (3)0.66476 (6)0.0457 (4)
H160.8198 (18)0.993 (2)0.6509 (7)0.051 (5)*
C170.64574 (14)0.9836 (2)0.63621 (6)0.0386 (4)
H170.6507 (16)1.007 (2)0.6023 (7)0.046 (5)*
O30.51904 (11)0.42341 (18)0.71200 (4)0.0516 (3)
O40.58364 (10)0.47874 (18)0.63946 (4)0.0487 (3)
N20.16967 (11)0.41399 (15)0.59871 (4)0.0322 (3)
C180.18457 (13)0.33694 (18)0.64132 (5)0.0327 (3)
C190.08718 (15)0.2508 (2)0.65977 (6)0.0394 (4)
H190.0144 (17)0.250 (2)0.6412 (7)0.047 (5)*
C200.09464 (17)0.1690 (2)0.70210 (6)0.0444 (4)
H200.0267 (18)0.109 (2)0.7142 (7)0.052 (5)*
C210.19865 (18)0.1703 (2)0.72802 (6)0.0464 (4)
H210.2068 (18)0.111 (3)0.7576 (8)0.059 (6)*
C220.29470 (16)0.2526 (2)0.71136 (6)0.0415 (4)
H220.3667 (16)0.248 (2)0.7290 (6)0.042 (5)*
C230.29029 (14)0.33797 (18)0.66756 (5)0.0334 (3)
C240.38529 (14)0.42421 (19)0.64630 (5)0.0334 (3)
C250.36901 (14)0.49811 (19)0.60313 (5)0.0324 (3)
H250.4317 (15)0.558 (2)0.5895 (6)0.035 (4)*
C260.25979 (13)0.49146 (17)0.57976 (5)0.0302 (3)
C270.50072 (14)0.4400 (2)0.67028 (5)0.0373 (4)
C280.69816 (17)0.5010 (4)0.65908 (8)0.0582 (5)
H28A0.7213 (19)0.395 (3)0.6728 (8)0.063 (7)*
H28B0.6998 (19)0.594 (3)0.6840 (8)0.062 (6)*
H28C0.746 (2)0.526 (3)0.6318 (9)0.069 (7)*
C290.24158 (13)0.57273 (18)0.53317 (5)0.0306 (3)
C300.33512 (14)0.6189 (2)0.50488 (5)0.0363 (3)
H300.4153 (16)0.594 (2)0.5146 (6)0.039 (5)*
C310.31678 (15)0.6928 (2)0.46116 (6)0.0422 (4)
H310.3842 (17)0.723 (3)0.4430 (7)0.053 (5)*
C320.20487 (15)0.7204 (2)0.44489 (6)0.0426 (4)
H320.1895 (16)0.773 (2)0.4136 (7)0.047 (5)*
C330.11146 (15)0.6745 (2)0.47229 (6)0.0420 (4)
H330.0322 (18)0.699 (2)0.4615 (7)0.054 (6)*
C340.12983 (14)0.6026 (2)0.51620 (6)0.0365 (3)
H340.0642 (17)0.572 (2)0.5368 (7)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0299 (6)0.0702 (8)0.0432 (6)0.0049 (5)0.0045 (5)0.0056 (6)
O20.0313 (6)0.0396 (6)0.0430 (6)0.0057 (5)0.0037 (4)0.0047 (5)
N10.0301 (6)0.0377 (7)0.0319 (6)0.0007 (5)0.0005 (5)0.0007 (5)
C10.0325 (8)0.0317 (7)0.0300 (7)0.0002 (6)0.0019 (6)0.0043 (6)
C20.0362 (8)0.0412 (8)0.0305 (8)0.0042 (7)0.0015 (6)0.0008 (6)
C30.0499 (10)0.0406 (9)0.0302 (8)0.0049 (7)0.0052 (7)0.0017 (7)
C40.0419 (9)0.0449 (9)0.0371 (8)0.0039 (7)0.0119 (7)0.0017 (7)
C50.0347 (8)0.0408 (8)0.0364 (8)0.0036 (7)0.0074 (6)0.0023 (7)
C60.0322 (8)0.0274 (7)0.0301 (7)0.0008 (6)0.0012 (6)0.0067 (6)
C70.0286 (7)0.0295 (7)0.0319 (7)0.0014 (6)0.0016 (6)0.0059 (6)
C80.0302 (7)0.0320 (7)0.0304 (7)0.0011 (6)0.0005 (6)0.0021 (6)
C90.0272 (7)0.0318 (7)0.0316 (7)0.0025 (6)0.0003 (6)0.0033 (6)
C100.0306 (8)0.0361 (8)0.0332 (8)0.0028 (6)0.0007 (6)0.0066 (6)
C110.0368 (9)0.0495 (10)0.0518 (10)0.0098 (8)0.0103 (8)0.0014 (9)
C120.0264 (7)0.0358 (8)0.0341 (8)0.0024 (6)0.0002 (6)0.0004 (6)
C130.0264 (8)0.0590 (10)0.0340 (8)0.0013 (7)0.0018 (6)0.0007 (7)
C140.0339 (9)0.0746 (13)0.0328 (8)0.0065 (8)0.0010 (6)0.0023 (8)
C150.0291 (8)0.0679 (12)0.0413 (9)0.0033 (8)0.0075 (7)0.0028 (8)
C160.0264 (8)0.0645 (11)0.0463 (9)0.0012 (8)0.0003 (7)0.0099 (8)
C170.0300 (8)0.0493 (9)0.0365 (8)0.0018 (7)0.0013 (6)0.0066 (7)
O30.0511 (7)0.0717 (9)0.0320 (6)0.0030 (6)0.0067 (5)0.0028 (6)
O40.0350 (6)0.0750 (9)0.0360 (6)0.0056 (6)0.0040 (5)0.0025 (6)
N20.0334 (7)0.0307 (6)0.0326 (6)0.0019 (5)0.0044 (5)0.0014 (5)
C180.0394 (8)0.0279 (7)0.0310 (7)0.0006 (6)0.0055 (6)0.0038 (6)
C190.0428 (9)0.0369 (8)0.0388 (8)0.0040 (7)0.0099 (7)0.0022 (7)
C200.0555 (11)0.0381 (9)0.0399 (9)0.0059 (8)0.0161 (8)0.0014 (7)
C210.0691 (12)0.0383 (9)0.0319 (8)0.0009 (8)0.0101 (8)0.0024 (7)
C220.0550 (11)0.0377 (8)0.0319 (8)0.0011 (8)0.0005 (7)0.0013 (7)
C230.0429 (9)0.0283 (7)0.0289 (7)0.0005 (6)0.0043 (6)0.0042 (6)
C240.0382 (8)0.0316 (7)0.0304 (7)0.0013 (6)0.0015 (6)0.0059 (6)
C250.0325 (8)0.0318 (7)0.0331 (8)0.0011 (6)0.0022 (6)0.0022 (6)
C260.0322 (7)0.0267 (7)0.0315 (7)0.0006 (6)0.0029 (6)0.0038 (6)
C270.0391 (9)0.0398 (8)0.0328 (8)0.0010 (7)0.0002 (6)0.0057 (6)
C280.0368 (10)0.0908 (17)0.0468 (11)0.0066 (10)0.0081 (8)0.0059 (11)
C290.0321 (7)0.0271 (7)0.0326 (7)0.0025 (6)0.0005 (6)0.0024 (6)
C300.0314 (8)0.0416 (8)0.0360 (8)0.0020 (7)0.0008 (6)0.0022 (7)
C310.0408 (9)0.0488 (10)0.0371 (8)0.0065 (7)0.0040 (7)0.0059 (7)
C320.0448 (9)0.0450 (9)0.0378 (8)0.0060 (7)0.0037 (7)0.0092 (7)
C330.0373 (9)0.0425 (9)0.0460 (9)0.0033 (7)0.0055 (7)0.0071 (7)
C340.0320 (8)0.0363 (8)0.0413 (8)0.0039 (6)0.0001 (6)0.0043 (7)
Geometric parameters (Å, º) top
O1—C101.2076 (19)O3—C271.206 (2)
O2—C101.3461 (19)O4—C271.337 (2)
O2—C111.443 (2)O4—C281.440 (2)
N1—C91.3249 (19)N2—C261.3274 (19)
N1—C11.3672 (19)N2—C181.3639 (19)
C1—C21.417 (2)C18—C191.421 (2)
C1—C61.421 (2)C18—C231.422 (2)
C2—C31.361 (2)C19—C201.367 (2)
C2—H20.97 (2)C19—H190.986 (19)
C3—C41.410 (2)C20—C211.401 (3)
C3—H30.98 (2)C20—H200.98 (2)
C4—C51.359 (2)C21—C221.375 (3)
C4—H41.013 (19)C21—H210.97 (2)
C5—C61.421 (2)C22—C231.416 (2)
C5—H51.03 (2)C22—H220.966 (19)
C6—C71.429 (2)C23—C241.432 (2)
C7—C81.377 (2)C24—C251.369 (2)
C7—C101.497 (2)C24—C271.495 (2)
C8—C91.417 (2)C25—C261.419 (2)
C8—H80.936 (14)C25—H250.953 (18)
C9—C121.4918 (19)C26—C291.484 (2)
C11—H11A1.01 (2)C28—H28A0.97 (2)
C11—H11B1.06 (2)C28—H28B1.03 (2)
C11—H11C1.00 (2)C28—H28C0.97 (2)
C12—C131.390 (2)C29—C341.393 (2)
C12—C171.400 (2)C29—C301.399 (2)
C13—C141.389 (2)C30—C311.386 (2)
C13—H130.98 (2)C30—H300.984 (18)
C14—C151.386 (3)C31—C321.385 (2)
C14—H140.95 (2)C31—H310.97 (2)
C15—C161.385 (3)C32—C331.384 (2)
C15—H150.98 (2)C32—H321.00 (2)
C16—C171.383 (2)C33—C341.384 (2)
C16—H160.98 (2)C33—H330.98 (2)
C17—H170.98 (2)C34—H340.99 (2)
C10—O2—C11115.21 (13)C27—O4—C28115.87 (14)
C9—N1—C1118.81 (13)C26—N2—C18118.36 (13)
N1—C1—C2116.88 (13)N2—C18—C19116.74 (14)
N1—C1—C6123.31 (13)N2—C18—C23124.05 (14)
C2—C1—C6119.80 (14)C19—C18—C23119.21 (14)
C3—C2—C1120.80 (15)C20—C19—C18120.67 (17)
C3—C2—H2121.3 (12)C20—C19—H19120.8 (11)
C1—C2—H2117.9 (12)C18—C19—H19118.6 (11)
C2—C3—C4119.52 (15)C19—C20—C21120.16 (16)
C2—C3—H3118.7 (11)C19—C20—H20119.6 (12)
C4—C3—H3121.7 (11)C21—C20—H20120.2 (12)
C5—C4—C3121.25 (15)C22—C21—C20120.87 (16)
C5—C4—H4121.4 (11)C22—C21—H21117.3 (13)
C3—C4—H4117.4 (11)C20—C21—H21121.8 (13)
C4—C5—C6120.93 (15)C21—C22—C23120.51 (17)
C4—C5—H5119.7 (11)C21—C22—H22119.7 (11)
C6—C5—H5119.4 (11)C23—C22—H22119.7 (11)
C1—C6—C5117.67 (14)C22—C23—C18118.59 (15)
C1—C6—C7116.56 (13)C22—C23—C24125.34 (15)
C5—C6—C7125.78 (14)C18—C23—C24116.06 (14)
C8—C7—C6118.94 (13)C25—C24—C23118.92 (14)
C8—C7—C10118.63 (13)C25—C24—C27118.93 (14)
C6—C7—C10122.43 (13)C23—C24—C27122.13 (14)
C7—C8—C9120.43 (14)C24—C25—C26120.95 (14)
C7—C8—H8119.8 (9)C24—C25—H25118.7 (11)
C9—C8—H8119.8 (8)C26—C25—H25120.4 (10)
N1—C9—C8121.86 (13)N2—C26—C25121.64 (14)
N1—C9—C12116.38 (13)N2—C26—C29117.28 (13)
C8—C9—C12121.76 (13)C25—C26—C29121.07 (13)
O1—C10—O2122.42 (14)O3—C27—O4123.01 (15)
O1—C10—C7126.16 (15)O3—C27—C24125.70 (15)
O2—C10—C7111.42 (12)O4—C27—C24111.28 (13)
O2—C11—H11A109.4 (12)O4—C28—H28A107.2 (14)
O2—C11—H11B104.2 (12)O4—C28—H28B111.5 (12)
H11A—C11—H11B110.2 (16)H28A—C28—H28B110.8 (18)
O2—C11—H11C110.4 (12)O4—C28—H28C104.1 (14)
H11A—C11—H11C109.0 (17)H28A—C28—H28C110.0 (19)
H11B—C11—H11C113.5 (17)H28B—C28—H28C112.9 (19)
C13—C12—C17118.32 (14)C34—C29—C30118.29 (14)
C13—C12—C9122.28 (13)C34—C29—C26120.33 (13)
C17—C12—C9119.40 (14)C30—C29—C26121.38 (14)
C14—C13—C12120.61 (15)C31—C30—C29120.74 (15)
C14—C13—H13118.9 (11)C31—C30—H30118.3 (10)
C12—C13—H13120.5 (11)C29—C30—H30120.9 (10)
C15—C14—C13120.73 (16)C32—C31—C30119.95 (15)
C15—C14—H14118.9 (12)C32—C31—H31122.3 (12)
C13—C14—H14120.4 (12)C30—C31—H31117.8 (12)
C16—C15—C14118.91 (15)C33—C32—C31120.00 (16)
C16—C15—H15119.9 (12)C33—C32—H32118.6 (11)
C14—C15—H15121.2 (12)C31—C32—H32121.4 (11)
C17—C16—C15120.71 (16)C32—C33—C34120.02 (16)
C17—C16—H16119.3 (12)C32—C33—H33120.0 (12)
C15—C16—H16120.0 (12)C34—C33—H33119.9 (12)
C16—C17—C12120.71 (15)C33—C34—C29120.99 (15)
C16—C17—H17121.9 (11)C33—C34—H34121.3 (11)
C12—C17—H17117.4 (11)C29—C34—H34117.7 (11)
C9—N1—C1—C2179.55 (13)C26—N2—C18—C19178.05 (13)
C9—N1—C1—C60.7 (2)C26—N2—C18—C231.8 (2)
N1—C1—C2—C3176.61 (15)N2—C18—C19—C20179.50 (15)
C6—C1—C2—C32.3 (2)C23—C18—C19—C200.3 (2)
C1—C2—C3—C41.3 (3)C18—C19—C20—C210.5 (3)
C2—C3—C4—C50.5 (3)C19—C20—C21—C220.4 (3)
C3—C4—C5—C61.2 (3)C20—C21—C22—C230.1 (3)
N1—C1—C6—C5177.27 (14)C21—C22—C23—C180.1 (2)
C2—C1—C6—C51.5 (2)C21—C22—C23—C24178.48 (15)
N1—C1—C6—C72.9 (2)N2—C18—C23—C22179.77 (14)
C2—C1—C6—C7178.26 (13)C19—C18—C23—C220.0 (2)
C4—C5—C6—C10.2 (2)N2—C18—C23—C241.1 (2)
C4—C5—C6—C7179.93 (15)C19—C18—C23—C24178.72 (13)
C1—C6—C7—C82.5 (2)C22—C23—C24—C25178.47 (15)
C5—C6—C7—C8177.74 (14)C18—C23—C24—C250.1 (2)
C1—C6—C7—C10178.17 (13)C22—C23—C24—C273.2 (2)
C5—C6—C7—C101.6 (2)C18—C23—C24—C27178.24 (13)
C6—C7—C8—C90.0 (2)C23—C24—C25—C260.6 (2)
C10—C7—C8—C9179.41 (13)C27—C24—C25—C26177.81 (13)
C1—N1—C9—C82.0 (2)C18—N2—C26—C251.2 (2)
C1—N1—C9—C12177.40 (13)C18—N2—C26—C29179.38 (12)
C7—C8—C9—N12.3 (2)C24—C25—C26—N20.1 (2)
C7—C8—C9—C12177.00 (13)C24—C25—C26—C29179.45 (13)
C11—O2—C10—O10.3 (2)C28—O4—C27—O30.3 (3)
C11—O2—C10—C7179.97 (13)C28—O4—C27—C24178.53 (16)
C8—C7—C10—O1166.36 (15)C25—C24—C27—O3158.55 (17)
C6—C7—C10—O113.0 (2)C23—C24—C27—O319.8 (3)
C8—C7—C10—O213.33 (19)C25—C24—C27—O420.3 (2)
C6—C7—C10—O2167.33 (13)C23—C24—C27—O4161.37 (14)
N1—C9—C12—C13162.76 (15)N2—C26—C29—C3415.8 (2)
C8—C9—C12—C1316.6 (2)C25—C26—C29—C34163.66 (14)
N1—C9—C12—C1716.3 (2)N2—C26—C29—C30163.24 (14)
C8—C9—C12—C17164.28 (15)C25—C26—C29—C3017.3 (2)
C17—C12—C13—C140.6 (3)C34—C29—C30—C310.2 (2)
C9—C12—C13—C14178.52 (16)C26—C29—C30—C31179.19 (15)
C12—C13—C14—C150.0 (3)C29—C30—C31—C320.6 (3)
C13—C14—C15—C160.7 (3)C30—C31—C32—C330.1 (3)
C14—C15—C16—C170.9 (3)C31—C32—C33—C340.7 (3)
C15—C16—C17—C120.3 (3)C32—C33—C34—C291.1 (3)
C13—C12—C17—C160.4 (3)C30—C29—C34—C330.7 (2)
C9—C12—C17—C16178.69 (16)C26—C29—C34—C33178.36 (15)
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAbd El-Aal, H. A. K. & El-Emary, T. I. (2014). J. Chem. Pharm. Res. 6, 90–99.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeady, L. W., Desneves, J. A., Kaye, J., Finlay, G. J., Baguley, B. C. & Denny, W. A. (2000). Bioorg. Med. Chem. 8, 977–984.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaila, N., Janz, K., Huang, A., Moretto, A., DeBernardo, S., Bedard, P. W., Tam, S., Clerin, V. Jr, Keith, J. C., Tsao, H. H., Sushkova, N., Shaw, G. D., Camphausen, R. T., Schaub, R. G. & Wang, Q. (2007). J. Med. Chem. 50, 40–64.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMetwally, M. A., Abdel-Wahab, B. F. & El-Hiti, G. A. (2010). Curr. Org. Chem. 14, 48–64.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWadher, S. J., Karande, N. A., Brokar, D. S. & Yeole, P. G. (2009). Int. J. ChemTech Res. 1, 1297–1302.  CAS Google Scholar
First citationWang, L.., Hu, L., Chen, H.., Sui, Y.. & Shen, W. (2009). J. Fluorine Chem. 130, 406–409.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds