organic compounds
(E)-N′-[4-(Dimethylamino)benzylidene]propionohydrazide monohydrate
aInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, bDepartment of Chemistry, SDM Institute of Technology, Ujire 574 240, India, cDepartment of P.G. Studies in Chemistry, Alva's College, Moodabidri 574 227, India, dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and eDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, Palestine
*Correspondence e-mail: warad@najah.edu
In the title hydrated hydrazine compound, C12H17N3O·H2O, the C=N bond adopts an E conformation. In the crystal, water molecules bridge the hydrazine molecules, via N—H⋯O and O—H⋯O hydrogen bonds, forming sheets parallel to the bc plane. There are C—H⋯π interactions present within the sheets, and further C—H⋯π interactions link the sheets to form a three-dimensional structure.
Keywords: crystal structure; hydrazine; hydrogen bonding.
CCDC reference: 1511441
Structure description
A number of industrial and biologically active compounds can be synthesized using via cycloaddition, ring closure and replacement reactions. In addition, are also known to have biological activities, such as antifungal (Singh & Dash, 1988), antimicrobial (El-Masry et al., 2000) and antitumor (Desai et al., 2001), and they have been used as herbicides. have also been employed as ligands for the complexation of metal ions (Aydogan et al., 2001), since many of these complexes may be useful and serve as models for biologically important species (Dharmaraj et al., 2001). In view of the importance of Schiff base we report herein on the synthesis and of the title compound.
as substratesIn the title compound (Fig. 1), the C9=N2 double bond adopts an E conformation. The methyleneformohydrazide unit [atoms O1/N2/N3/C9/C10; maximum deviation = 0.043 (1) Å for atom N2] is inclined to the benzene ring (C3–C8) by 8.94 (9)°. The solvent water molecule is linked to the hydrazine molecule by an N—H⋯O hydrogen bond (Fig. 1 and Table 1).
In the crystal, water molecules bridge the hydrazine molecules via N—H⋯O and O—H⋯O hydrogen bonds, forming sheets parallel to the bc plane (Table 1 and Fig. 2). There are C—H⋯π interactions present within the sheets, and further C—H⋯π interactions link the sheets to form a three-dimensional structure (Table 1 and Fig. 3).
Synthesis and crystallization
A mixture of 4-(dimethylamino)benzaldehyde (0.01 mol) and hydrazine hydrate (0.01 mol) in 15 ml of propanoic acid was refluxed for ca 2 h. On cooling, the solid that separated was filtered off and recrystallized from dimethylformamide (DMF). Colourless block-like crystals were grown from DMF by slow evaporation of the solvent (yield 82%, m.p. 409 K).
Refinement
Crystal data, data collection and structure . The water H atoms were located in a difference Fourier map and refined, with Uiso(H) = 1.5Ueq(O).
details are summarized in Table 2
|
Structural data
CCDC reference: 1511441
https://doi.org/10.1107/S2414314616017168/su4088sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616017168/su4088Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616017168/su4088Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).C12H17N3O·H2O | F(000) = 512 |
Mr = 237.30 | Dx = 1.217 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2ybc | Cell parameters from 2072 reflections |
a = 12.5756 (7) Å | θ = 3.8–63.7° |
b = 10.5214 (6) Å | µ = 0.69 mm−1 |
c = 10.5737 (6) Å | T = 296 K |
β = 112.279 (3)° | Block, colourless |
V = 1294.60 (13) Å3 | 0.29 × 0.26 × 0.22 mm |
Z = 4 |
Bruker X8 Proteum diffractometer | 2072 independent reflections |
Radiation source: Bruker MicroStar microfocus rotating anode | 1799 reflections with I > 2σ(I) |
Helios multilayer optics monochromator | Rint = 0.053 |
Detector resolution: 18.4 pixels mm-1 | θmax = 63.7°, θmin = 3.8° |
φ and ω scans | h = −14→14 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −12→11 |
Tmin = 0.826, Tmax = 0.864 | l = −11→12 |
10783 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0887P)2 + 0.250P] where P = (Fo2 + 2Fc2)/3 |
2072 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.21 e Å−3 |
3 restraints | Δρmin = −0.24 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.01204 (10) | 0.62894 (12) | 0.61531 (12) | 0.0317 (4) | |
N1 | 0.66806 (12) | 0.86484 (13) | 0.57578 (14) | 0.0262 (4) | |
N2 | 0.20753 (11) | 0.76812 (13) | 0.69793 (13) | 0.0223 (4) | |
N3 | 0.12447 (11) | 0.78061 (13) | 0.75446 (13) | 0.0223 (4) | |
C1 | 0.67145 (15) | 0.78096 (18) | 0.46817 (17) | 0.0300 (5) | |
C2 | 0.74862 (15) | 0.97087 (16) | 0.61820 (18) | 0.0276 (5) | |
C3 | 0.57562 (14) | 0.86170 (15) | 0.61455 (15) | 0.0214 (5) | |
C4 | 0.49094 (14) | 0.76498 (15) | 0.56646 (15) | 0.0218 (5) | |
C5 | 0.39942 (13) | 0.75970 (15) | 0.60754 (15) | 0.0213 (5) | |
C6 | 0.38583 (14) | 0.85007 (15) | 0.69790 (15) | 0.0215 (5) | |
C7 | 0.46896 (14) | 0.94588 (15) | 0.74484 (16) | 0.0229 (5) | |
C8 | 0.56171 (14) | 0.95285 (15) | 0.70483 (16) | 0.0232 (5) | |
C9 | 0.29009 (14) | 0.84864 (15) | 0.74319 (15) | 0.0222 (5) | |
C10 | 0.03017 (14) | 0.70707 (15) | 0.70870 (16) | 0.0235 (5) | |
C11 | −0.05031 (14) | 0.72381 (16) | 0.78285 (17) | 0.0261 (5) | |
C12 | −0.03320 (16) | 0.61625 (18) | 0.88521 (18) | 0.0314 (6) | |
O2 | 0.16326 (10) | 0.94926 (11) | 0.97640 (12) | 0.0275 (4) | |
H1 | 0.67440 | 0.69420 | 0.49750 | 0.0450* | |
H2 | 0.04330 | 0.62020 | 0.95350 | 0.0470* | |
H3 | 0.80850 | 0.95850 | 0.58410 | 0.0410* | |
H4 | 0.49740 | 0.70410 | 0.50610 | 0.0260* | |
H5 | 0.34550 | 0.69500 | 0.57480 | 0.0260* | |
H6 | 0.61510 | 1.01800 | 0.73770 | 0.0280* | |
H7 | 0.46170 | 1.00680 | 0.80480 | 0.0270* | |
H8 | 0.13350 | 0.83510 | 0.81830 | 0.0270* | |
H9 | −0.03550 | 0.80470 | 0.83030 | 0.0310* | |
H10 | −0.12920 | 0.72380 | 0.71760 | 0.0310* | |
H11 | −0.04420 | 0.53610 | 0.83860 | 0.0470* | |
H12 | −0.08790 | 0.62460 | 0.92800 | 0.0470* | |
H13 | 0.28860 | 0.90830 | 0.80740 | 0.0270* | |
H14 | 0.60380 | 0.79370 | 0.38730 | 0.0450* | |
H15 | 0.73840 | 0.79950 | 0.44860 | 0.0450* | |
H16 | 0.70880 | 1.04870 | 0.58230 | 0.0410* | |
H17 | 0.78160 | 0.97520 | 0.71620 | 0.0410* | |
H18 | 0.1452 (18) | 0.9041 (17) | 1.0300 (19) | 0.0410* | |
H19 | 0.1159 (16) | 1.0074 (15) | 0.955 (2) | 0.0410* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0339 (7) | 0.0360 (7) | 0.0292 (7) | −0.0111 (5) | 0.0165 (5) | −0.0072 (5) |
N1 | 0.0251 (7) | 0.0296 (8) | 0.0265 (8) | −0.0065 (6) | 0.0126 (6) | −0.0058 (6) |
N2 | 0.0233 (7) | 0.0256 (7) | 0.0212 (7) | 0.0004 (5) | 0.0120 (6) | 0.0020 (5) |
N3 | 0.0242 (7) | 0.0253 (7) | 0.0206 (7) | −0.0012 (5) | 0.0120 (6) | −0.0019 (5) |
C1 | 0.0277 (9) | 0.0365 (10) | 0.0292 (9) | −0.0041 (7) | 0.0145 (7) | −0.0067 (7) |
C2 | 0.0262 (9) | 0.0271 (9) | 0.0309 (9) | −0.0042 (7) | 0.0125 (7) | 0.0007 (7) |
C3 | 0.0223 (8) | 0.0228 (8) | 0.0177 (8) | −0.0001 (6) | 0.0061 (6) | 0.0033 (6) |
C4 | 0.0259 (9) | 0.0204 (8) | 0.0178 (8) | −0.0005 (6) | 0.0068 (6) | −0.0007 (6) |
C5 | 0.0218 (8) | 0.0211 (8) | 0.0192 (8) | −0.0027 (6) | 0.0056 (6) | 0.0018 (6) |
C6 | 0.0231 (8) | 0.0221 (8) | 0.0184 (8) | 0.0007 (6) | 0.0069 (6) | 0.0049 (6) |
C7 | 0.0281 (9) | 0.0209 (8) | 0.0202 (8) | −0.0009 (6) | 0.0098 (6) | −0.0012 (6) |
C8 | 0.0252 (8) | 0.0208 (8) | 0.0226 (8) | −0.0042 (6) | 0.0078 (6) | −0.0011 (6) |
C9 | 0.0264 (9) | 0.0217 (8) | 0.0183 (8) | 0.0012 (6) | 0.0081 (6) | 0.0020 (6) |
C10 | 0.0254 (9) | 0.0235 (8) | 0.0227 (8) | 0.0012 (6) | 0.0104 (7) | 0.0045 (6) |
C11 | 0.0228 (9) | 0.0281 (9) | 0.0284 (9) | 0.0024 (7) | 0.0109 (7) | 0.0015 (7) |
C12 | 0.0354 (10) | 0.0341 (10) | 0.0323 (10) | 0.0016 (8) | 0.0216 (8) | 0.0028 (7) |
O2 | 0.0310 (7) | 0.0269 (7) | 0.0278 (7) | 0.0054 (5) | 0.0148 (5) | 0.0026 (5) |
O1—C10 | 1.238 (2) | C11—C12 | 1.524 (2) |
O2—H18 | 0.83 (2) | C1—H1 | 0.9600 |
O2—H19 | 0.823 (18) | C1—H15 | 0.9600 |
N1—C1 | 1.453 (2) | C1—H14 | 0.9600 |
N1—C3 | 1.372 (2) | C2—H16 | 0.9600 |
N1—C2 | 1.459 (2) | C2—H17 | 0.9600 |
N2—N3 | 1.393 (2) | C2—H3 | 0.9600 |
N2—C9 | 1.284 (2) | C4—H4 | 0.9300 |
N3—C10 | 1.343 (2) | C5—H5 | 0.9300 |
N3—H8 | 0.8600 | C7—H7 | 0.9300 |
C3—C4 | 1.420 (2) | C8—H6 | 0.9300 |
C3—C8 | 1.410 (2) | C9—H13 | 0.9300 |
C4—C5 | 1.377 (3) | C11—H10 | 0.9700 |
C5—C6 | 1.404 (2) | C11—H9 | 0.9700 |
C6—C7 | 1.401 (2) | C12—H12 | 0.9600 |
C6—C9 | 1.455 (3) | C12—H2 | 0.9600 |
C7—C8 | 1.385 (3) | C12—H11 | 0.9600 |
C10—C11 | 1.507 (3) | ||
H18—O2—H19 | 105 (2) | N1—C1—H15 | 109.00 |
C1—N1—C2 | 118.82 (15) | N1—C2—H3 | 109.00 |
C1—N1—C3 | 119.94 (14) | N1—C2—H16 | 109.00 |
C2—N1—C3 | 119.67 (14) | H3—C2—H16 | 109.00 |
N3—N2—C9 | 114.20 (13) | H3—C2—H17 | 109.00 |
N2—N3—C10 | 119.64 (13) | N1—C2—H17 | 109.00 |
N2—N3—H8 | 120.00 | H16—C2—H17 | 109.00 |
C10—N3—H8 | 120.00 | C5—C4—H4 | 119.00 |
C4—C3—C8 | 117.45 (16) | C3—C4—H4 | 119.00 |
N1—C3—C8 | 121.51 (15) | C4—C5—H5 | 119.00 |
N1—C3—C4 | 121.03 (14) | C6—C5—H5 | 119.00 |
C3—C4—C5 | 121.26 (15) | C6—C7—H7 | 119.00 |
C4—C5—C6 | 121.30 (15) | C8—C7—H7 | 119.00 |
C7—C6—C9 | 119.37 (14) | C7—C8—H6 | 120.00 |
C5—C6—C9 | 123.14 (15) | C3—C8—H6 | 120.00 |
C5—C6—C7 | 117.49 (16) | C6—C9—H13 | 119.00 |
C6—C7—C8 | 122.11 (15) | N2—C9—H13 | 119.00 |
C3—C8—C7 | 120.38 (15) | C10—C11—H9 | 110.00 |
N2—C9—C6 | 122.51 (14) | C12—C11—H9 | 110.00 |
O1—C10—N3 | 122.71 (17) | C12—C11—H10 | 110.00 |
N3—C10—C11 | 114.87 (14) | C10—C11—H10 | 110.00 |
O1—C10—C11 | 122.39 (16) | H9—C11—H10 | 108.00 |
C10—C11—C12 | 109.93 (15) | C11—C12—H11 | 109.00 |
N1—C1—H1 | 109.00 | C11—C12—H12 | 109.00 |
N1—C1—H14 | 109.00 | C11—C12—H2 | 109.00 |
H1—C1—H14 | 109.00 | H2—C12—H12 | 110.00 |
H1—C1—H15 | 109.00 | H11—C12—H12 | 109.00 |
H14—C1—H15 | 109.00 | H2—C12—H11 | 109.00 |
C1—N1—C3—C4 | 9.6 (2) | C4—C3—C8—C7 | 0.6 (2) |
C1—N1—C3—C8 | −171.26 (15) | C3—C4—C5—C6 | 0.4 (2) |
C2—N1—C3—C4 | 175.19 (14) | C4—C5—C6—C7 | 0.0 (2) |
C2—N1—C3—C8 | −5.7 (2) | C4—C5—C6—C9 | 179.55 (15) |
C9—N2—N3—C10 | 175.73 (14) | C5—C6—C7—C8 | 0.0 (2) |
N3—N2—C9—C6 | 179.26 (13) | C9—C6—C7—C8 | −179.60 (15) |
N2—N3—C10—O1 | −1.4 (2) | C5—C6—C9—N2 | −3.8 (2) |
N2—N3—C10—C11 | 176.70 (13) | C7—C6—C9—N2 | 175.81 (15) |
N1—C3—C4—C5 | 178.48 (15) | C6—C7—C8—C3 | −0.3 (2) |
C8—C3—C4—C5 | −0.7 (2) | O1—C10—C11—C12 | 77.2 (2) |
N1—C3—C8—C7 | −178.52 (15) | N3—C10—C11—C12 | −100.88 (17) |
Cg1 is the centroid of the C3–C8 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H8···O2 | 0.86 | 1.98 | 2.8330 (18) | 175 |
O2—H18···O1i | 0.83 (2) | 2.21 (2) | 2.9272 (18) | 144 (2) |
O2—H18···N2i | 0.83 (2) | 2.45 (2) | 3.1684 (18) | 145 (2) |
O2—H19···O1ii | 0.82 (3) | 1.97 (2) | 2.7845 (18) | 172 (2) |
C1—H14···Cg1iii | 0.96 | 2.83 | 3.567 (2) | 135 |
C2—H16···Cg1iv | 0.96 | 2.91 | 3.701 (2) | 140 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, y+1/2, −z+3/2; (iii) x, −y+3/2, z−1/2; (iv) −x+1, −y+2, −z+1. |
Acknowledgements
The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility. Authors also thank Alva's Education Foundation, Moodbidri, for the research facilities.
References
Aydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480. CAS Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90. CrossRef CAS Google Scholar
Dharmaraj, N., Viswanalhamurthi, P. & Natarajan, K. (2001). Transition Met. Chem. 26, 105–109. CrossRef CAS Google Scholar
El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.