organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(2-Iso­propyl­phen­­oxy)acetic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, and cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 October 2016; accepted 25 October 2016; online 28 October 2016)

In the title compound, C11H14O3, the pendant –OCH2COOH chain is in an extended conformation and almost lies in the plane of the benzene ring, as indicated by the dihedral angle of 2.61 (5)°. In the crystal, mol­ecules are linked by a pair of O—H⋯O hydrogen bonds, forming classical carb­oxy­lic acid inversion dimers, with an R22(8) loop. The crystal structure of this compound have been reported previously [Smith et al. (1992[Smith, G., Lynch, D. E., Sagatys, D. S., Kennard, C. H. L. & Katekar, G. F. (1992). Aust. J. Chem. 45, 1101-1108.]). Aust. J. Chem. 45, 1101–1108], however, in that report, the unit-cell dimensions differ significantly from those of the title structure and the carboxyl H atom was disordered within a cyclic hydrogen-bonded dimer.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Phen­oxy­acetic acid derivatives are inter­esting building blocks in a variety of natural and synthetic compounds found to possess a variety of pharmacological applications, such as anti­cancer, analgesic, anti-inflammatory and gastrin receptor antagonistic activities (Gurupadaswamy et al., 2013[Gurupadaswamy, H. D., Girish, V., Kavitha, C. V., Raghavan, S. C. & Khanum, S. A. (2013). Eur. J. Med. Chem. 63, 536-543.]). Moreover, derivatives of phen­oxy­acetic acid are characterized by a broad spectrum of physiological activity whose type and strength depends on the substituents in both the aromatic ring and the acid fragment (Okawara et al., 1988[Okawara, T., Ikeda, N., Yamasaki, T. & Furukawa, M. (1988). Chem. Pharm. Bull. 36, 3628-3631.]). As part of our ongoing research on this class of compounds (Mohammed et al., 2016[Mohammed, Y. H. I., Naveen, S., Lokanath, N. K. & Khanum, S. A. (2016). IUCrData, 1, x160416.]), the title compound was synthesized and we report herein its crystal structure. The mol­ecule is being assessed for its biological activity.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The pendant –OCH2COOH chain [O10/C11/C12/O13/O14; maximum deviation = 0.031 (1) Å for atom C11] is in an extended conformation and almost lies in the plane of the benzene ring (atoms C1–C6), as indicated by the dihedral angle of 2.61 (5)°. The bond lengths and angles are similar to those reported for the tert-butyl analogue 2-(2-tert-butyl­phen­oxy)acetic acid (Kennard et al., 1987[Kennard, C. H. L., Astbury, I. C., Smith, G., Sagatys, D. S. & Moore, F. H. (1987). Z. Kristallogr. 180, 227.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked by a pair of O—H⋯O hydrogen bonds, forming classical carb­oxy­lic acid inversion dimers, with an R22(8) loop (Table 1[link] and Fig. 2[link]). There are no other significant inter­molecular inter­actions present.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯O14i 0.92 (2) 1.73 (2) 2.6392 (11) 173.5 (17)
Symmetry code: (i) -x+3, -y+2, -z+1.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link]).

The crystal structure of this compound have been reported previously (Smith et al., 1992[Smith, G., Lynch, D. E., Sagatys, D. S., Kennard, C. H. L. & Katekar, G. F. (1992). Aust. J. Chem. 45, 1101-1108.]), however, in that report, the unit-cell dimensions differ significantly from those of the title compound:

a, b, c (Å) 5.9946 (8), 7.944 (1), 12.177 (1); α, β, γ (°) 103.666 (9), 94.890 (9), 111.74 (1) (Smith et al., 1992[Smith, G., Lynch, D. E., Sagatys, D. S., Kennard, C. H. L. & Katekar, G. F. (1992). Aust. J. Chem. 45, 1101-1108.])

cf. a, b, c (Å) 5.9825 (2), 7.8623 (2), 11.9240 (3); α, β, γ (°) 104.564 (1), 93.570 (1), 112.302 (1) (present structural report).

It was also found that the carboxyl H atom was disordered within a cyclic hydrogen-bonded dimer, which is not the case in the present structural report.

Synthesis and crystallization

A mixture of 2-iso­propyl­phenol (0.03 mol), ethyl chloro­acetate (0.045 mol) and anhydrous potassium carbonate (0.03 mol) in dry acetone (50 ml) was refluxed for 12 h. The reaction mixture was cooled and the solvent removed by distillation. The residual mass was triturated with cold water to remove potassium carbonate, and extracted with ether (3 × 30 ml). The ether layer was washed with 10% sodium hydroxide solution (3 × 30 ml) followed by water (3 × 30 ml) and then dried over anhydrous sodium sulfate and evaporated to give isopropyl phen­oxy ethyl acetate. This compound (0.015 mol) was then dissolved in ethanol (15 ml) and a sodium hydroxide (0.025 mol) solution in water (5 ml) was added. The mixture was refluxed for 9 h and the reaction mixture was cooled and acidified with 5 M hydro­chloric acid. The precipitate was filtered off, washed with water and recrystallized from ethanol to yield colourless block-like crystals (yield 88%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The carboxyl H atom (H13) was located in a difference Fourier map and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C11H14O3
Mr 194.22
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 5.9825 (2), 7.8623 (2), 11.9240 (3)
α, β, γ (°) 104.564 (1), 93.570 (1), 112.302 (1)
V3) 494.38 (2)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.77
Crystal size (mm) 0.29 × 0.26 × 0.22
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.807, 0.848
No. of measured, independent and observed [I > 2σ(I)] reflections 5019, 1617, 1549
Rint 0.027
(sin θ/λ)max−1) 0.585
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.05
No. of reflections 1617
No. of parameters 134
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.17
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

2-(2-Isopropylphenoxy)acetic acid top
Crystal data top
C11H14O3Z = 2
Mr = 194.22F(000) = 208
Triclinic, P1Dx = 1.305 Mg m3
a = 5.9825 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 7.8623 (2) ÅCell parameters from 1549 reflections
c = 11.9240 (3) Åθ = 6.4–64.4°
α = 104.564 (1)°µ = 0.77 mm1
β = 93.570 (1)°T = 296 K
γ = 112.302 (1)°Block, colourless
V = 494.38 (2) Å30.29 × 0.26 × 0.22 mm
Data collection top
Bruker X8 Proteum
diffractometer
1617 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode1549 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.027
Detector resolution: 18.4 pixels mm-1θmax = 64.4°, θmin = 6.4°
φ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 89
Tmin = 0.807, Tmax = 0.848l = 1313
5019 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.1244P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1617 reflectionsΔρmax = 0.14 e Å3
134 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (4)
Special details top

Experimental. 1H NMR(400 MHz, CdCl3 δ ppm) 1.25(s, 6H, 2CH3), 4.69 (s, 2H, OCH2), 6.73-7.26 (m, 4H, Ar-H), 9.18 (s, IH, OH)

LC-MS m/z 195 (M+1).

Anal. Calcd. for C11H14O6: C, 68.02; H, 7.27; O, 24.71 Found: C, 68.31; H, 7.06; O, 24.53%.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4051 (2)0.64683 (15)0.21029 (9)0.0187 (3)
C20.5345 (2)0.59261 (15)0.28716 (9)0.0197 (3)
C30.4231 (2)0.42232 (16)0.31556 (10)0.0230 (3)
H30.51190.38850.36620.028*
C40.1784 (2)0.30264 (16)0.26815 (10)0.0237 (3)
H40.10380.18790.28630.028*
C50.0462 (2)0.35395 (16)0.19412 (10)0.0237 (3)
H50.11820.27500.16320.028*
C60.1600 (2)0.52438 (16)0.16600 (10)0.0217 (3)
H60.06920.55750.11590.026*
C70.53617 (19)0.82750 (15)0.17505 (9)0.0200 (3)
H70.65380.92500.24400.024*
C80.3630 (2)0.91107 (16)0.13603 (10)0.0240 (3)
H8A0.25810.82480.06310.036*
H8B0.45721.03360.12530.036*
H8C0.26470.92730.19510.036*
C90.6813 (2)0.78602 (17)0.07837 (11)0.0261 (3)
H9A0.78770.73220.10390.039*
H9B0.77770.90370.06240.039*
H9C0.56960.69610.00810.039*
O100.77591 (14)0.71977 (11)0.33094 (7)0.0234 (2)
C110.9046 (2)0.67696 (16)0.41536 (9)0.0212 (3)
H11A0.90800.55220.38180.025*
H11B0.82250.67200.48290.025*
C121.1617 (2)0.82965 (15)0.45327 (9)0.0201 (3)
O131.29112 (15)0.78801 (12)0.52707 (7)0.0264 (3)
H131.450 (4)0.878 (3)0.5439 (16)0.054 (5)*
O141.24080 (14)0.97255 (11)0.42015 (7)0.0237 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0217 (6)0.0186 (5)0.0165 (5)0.0096 (4)0.0040 (4)0.0044 (4)
C20.0203 (6)0.0192 (6)0.0187 (5)0.0078 (4)0.0026 (4)0.0048 (4)
C30.0275 (6)0.0223 (6)0.0224 (6)0.0117 (5)0.0037 (4)0.0098 (4)
C40.0281 (6)0.0179 (6)0.0243 (6)0.0074 (5)0.0076 (5)0.0073 (4)
C50.0206 (6)0.0214 (6)0.0242 (6)0.0048 (5)0.0037 (4)0.0046 (4)
C60.0215 (6)0.0229 (6)0.0206 (6)0.0096 (5)0.0017 (4)0.0063 (4)
C70.0199 (6)0.0179 (5)0.0203 (5)0.0060 (4)0.0006 (4)0.0064 (4)
C80.0256 (6)0.0244 (6)0.0266 (6)0.0121 (5)0.0049 (5)0.0124 (5)
C90.0246 (6)0.0264 (6)0.0328 (7)0.0116 (5)0.0092 (5)0.0151 (5)
O100.0209 (4)0.0231 (4)0.0252 (4)0.0057 (3)0.0031 (3)0.0121 (3)
C110.0250 (6)0.0227 (6)0.0189 (6)0.0112 (5)0.0012 (4)0.0093 (4)
C120.0260 (6)0.0225 (6)0.0155 (5)0.0135 (5)0.0027 (4)0.0063 (4)
O130.0244 (5)0.0274 (5)0.0279 (5)0.0087 (4)0.0034 (3)0.0141 (4)
O140.0249 (5)0.0228 (5)0.0245 (4)0.0092 (3)0.0003 (3)0.0106 (3)
Geometric parameters (Å, º) top
C1—C61.3902 (16)C7—H70.9800
C1—C21.4071 (15)C8—H8A0.9600
C1—C71.5182 (15)C8—H8B0.9600
C2—O101.3802 (14)C8—H8C0.9600
C2—C31.3895 (16)C9—H9A0.9600
C3—C41.3897 (17)C9—H9B0.9600
C3—H30.9300C9—H9C0.9600
C4—C51.3791 (16)O10—C111.4106 (13)
C4—H40.9300C11—C121.4999 (16)
C5—C61.3905 (16)C11—H11A0.9700
C5—H50.9300C11—H11B0.9700
C6—H60.9300C12—O141.2187 (13)
C7—C81.5272 (15)C12—O131.3168 (13)
C7—C91.5297 (16)O13—H130.92 (2)
C6—C1—C2117.03 (10)C7—C8—H8A109.5
C6—C1—C7122.82 (9)C7—C8—H8B109.5
C2—C1—C7120.10 (9)H8A—C8—H8B109.5
O10—C2—C3123.42 (10)C7—C8—H8C109.5
O10—C2—C1115.23 (9)H8A—C8—H8C109.5
C3—C2—C1121.34 (10)H8B—C8—H8C109.5
C2—C3—C4119.81 (10)C7—C9—H9A109.5
C2—C3—H3120.1C7—C9—H9B109.5
C4—C3—H3120.1H9A—C9—H9B109.5
C5—C4—C3120.03 (10)C7—C9—H9C109.5
C5—C4—H4120.0H9A—C9—H9C109.5
C3—C4—H4120.0H9B—C9—H9C109.5
C4—C5—C6119.63 (10)C2—O10—C11116.49 (8)
C4—C5—H5120.2O10—C11—C12109.23 (9)
C6—C5—H5120.2O10—C11—H11A109.8
C1—C6—C5122.15 (10)C12—C11—H11A109.8
C1—C6—H6118.9O10—C11—H11B109.8
C5—C6—H6118.9C12—C11—H11B109.8
C1—C7—C8113.13 (9)H11A—C11—H11B108.3
C1—C7—C9109.82 (9)O14—C12—O13124.46 (10)
C8—C7—C9110.53 (9)O14—C12—C11124.79 (10)
C1—C7—H7107.7O13—C12—C11110.74 (9)
C8—C7—H7107.7C12—O13—H13109.0 (11)
C9—C7—H7107.7
C6—C1—C2—O10178.81 (9)C4—C5—C6—C10.08 (17)
C7—C1—C2—O103.74 (15)C6—C1—C7—C826.38 (14)
C6—C1—C2—C31.20 (16)C2—C1—C7—C8156.33 (10)
C7—C1—C2—C3176.24 (10)C6—C1—C7—C997.63 (12)
O10—C2—C3—C4179.62 (10)C2—C1—C7—C979.66 (12)
C1—C2—C3—C40.40 (17)C3—C2—O10—C114.86 (15)
C2—C3—C4—C50.69 (17)C1—C2—O10—C11175.15 (9)
C3—C4—C5—C60.93 (17)C2—O10—C11—C12179.75 (8)
C2—C1—C6—C50.97 (16)O10—C11—C12—O143.41 (15)
C7—C1—C6—C5176.40 (10)O10—C11—C12—O13176.35 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O14i0.92 (2)1.73 (2)2.6392 (11)173.5 (17)
Symmetry code: (i) x+3, y+2, z+1.
 

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility. Yasser Hussain Issa Mohammed thanks University of Hajah, Yemen, for financial support. SAK gratefully acknowledges the financial support provided by the Vision Group of Science and Technology, Government of Karnataka, under the scheme CISEE, Department of Information Technology, Biotechnology and Science and Technology, Bangalore.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGurupadaswamy, H. D., Girish, V., Kavitha, C. V., Raghavan, S. C. & Khanum, S. A. (2013). Eur. J. Med. Chem. 63, 536–543.  CrossRef CAS PubMed Google Scholar
First citationKennard, C. H. L., Astbury, I. C., Smith, G., Sagatys, D. S. & Moore, F. H. (1987). Z. Kristallogr. 180, 227.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohammed, Y. H. I., Naveen, S., Lokanath, N. K. & Khanum, S. A. (2016). IUCrData, 1, x160416.  Google Scholar
First citationOkawara, T., Ikeda, N., Yamasaki, T. & Furukawa, M. (1988). Chem. Pharm. Bull. 36, 3628–3631.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G., Lynch, D. E., Sagatys, D. S., Kennard, C. H. L. & Katekar, G. F. (1992). Aust. J. Chem. 45, 1101–1108.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds