organic compounds
[(Dimethylamino)methyl]dimethylazanium bis(trifluoromethanesulfonyl)amide
aAalto University, Department of Forest Products Technology, PO Box 16300, 00076 Aalto, Finland, bUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, and cUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at
The title molecular salt, C5H15N2+·C2F6NO4S2−, was obtained by a between bis(trifluoromethanesulfonyl)amine and bis(dimethylamino)methane. In the crystal, the ions are linked by N—H⋯O=S hydrogen bonds, and these units are linked by C—H⋯O hydrogen bonds, forming sheets parallel to the bc plane. The crystal was refined as a non-merohedral twin with a BASF factor of 0.316 (1).
Keywords: crystal structure; bis(triflimide); ionic liquid; hydrogen bonding.
CCDC reference: 1510243
Structure description
The molecular structure of the title compound is shown in Fig. 1. The bis(dimethylamino)methane molecule is protonated resulting in a mono-cation. Bis(trifluoromethanesulfonyl)amides [also called `bis(triflimides)'] are known to exist as either syn or anti conformers in the solid state (Bentivoglio et al., 2009; Laus et al., 2011). Here, the anion adopts an anti conformation with a C6—S1⋯S2—C7 torsion angle of 169.4 (1)°. The negative charge of the anion is effectively delocalized, thus bestowing only weak coordinating properties.
In the crystal, N—H⋯O=S hydrogen bonds link the ions and one strong and two weaker C—H⋯O=S hydrogen bonds link these units, forming sheets parallel to the bc plane (Figs. 2 and 3, Table 1). No direct contacts to the triflimide nitrogen N3 atom were detected.
This compound is another example of a low-melting, protic organic bis(triflimide) salt. Properties and applications of these protic Ionic Liquids (PILs) have been reviewed (Greaves & Drummond, 2008). The related structure of an organic liquid salt formed by a proton-transfer reaction between bis(trifluoromethanesulfonyl)amine and dimethylformamide has been reported (Cardenas & O'Hagan, 2016).
Synthesis and crystallization
Bis(dimethylamino)methane (1.20 g, 11.7 mmol) was added dropwise to bis((trifluoromethane)sulfonyl)amine (3.30 g, 11.7 mmol). The mixture was stirred at room temperature to yield a viscous, colourless liquid. Suitable crystals were obtained by slow cooling (m.p. 280–283 K). 1H NMR (300 MHz, DMSO-d6): δ 2.45 (s, 12H), 3.63 (s, 2H), 6.9 (br, 1H) p.p.m. 13C NMR (75 MHz, DMSO-d6): δ 41.7, 80.7 (4 C), 119.5 (q, J = 322 Hz, 2C) p.p.m. IR (neat): ν 3172 (w), 2807 (w), 1345 (m), 1325 (m), 1179 (s), 1130 (s), 1052 (s), 790 (w), 741 (w), 612 (m), 570 (m), 510 (m) cm−1.
Refinement
Crystal data, data collection and structure . The crystal was refined as a non-merohedral twin [180° rotation about a*] with a BASF factor of 0.316 (1).
details are summarized in Table 2
|
Structural data
CCDC reference: 1510243
https://doi.org/10.1107/S2414314616016588/su4084sup1.cif
contains datablocks Global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616016588/su4084Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616016588/su4084Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2414314616016588/su4084Isup4.cml
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008).C5H15N2+·C2F6NO4S2− | F(000) = 784 |
Mr = 383.36 | Dx = 1.602 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6860 reflections |
a = 8.5071 (3) Å | θ = 3.0–28.3° |
b = 20.9755 (8) Å | µ = 0.42 mm−1 |
c = 8.9099 (4) Å | T = 100 K |
β = 90.173 (3)° | Block, colourless |
V = 1589.88 (11) Å3 | 0.24 × 0.20 × 0.20 mm |
Z = 4 |
Oxford Diffraction Gemini-R Ultra diffractometer | 2874 independent reflections |
Graphite monochromator | 2739 reflections with I > 2σ(I) |
Detector resolution: 10.3822 pixels mm-1 | Rint = 0.028 |
ω (1° width) scans | θmax = 25.3°, θmin = 3° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | h = −10→8 |
Tmin = 0.907, Tmax = 0.922 | k = −25→23 |
9624 measured reflections | l = −9→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.068 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0373P)2 + 0.4067P] where P = (Fo2 + 2Fc2)/3 |
2874 reflections | (Δ/σ)max < 0.001 |
207 parameters | Δρmax = 0.33 e Å−3 |
1 restraint | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.57434 (6) | 0.14606 (2) | 0.75790 (7) | 0.01443 (13) | |
S2 | 0.72783 (7) | 0.03241 (2) | 0.83172 (7) | 0.01478 (13) | |
F4 | 0.95493 (16) | 0.11210 (6) | 0.77018 (17) | 0.0269 (3) | |
F5 | 0.94238 (18) | 0.03106 (7) | 0.62282 (16) | 0.0310 (4) | |
F3 | 0.33176 (17) | 0.09974 (8) | 0.89895 (19) | 0.0346 (4) | |
F6 | 1.03258 (17) | 0.01977 (8) | 0.84722 (18) | 0.0357 (4) | |
F1 | 0.29633 (17) | 0.11073 (8) | 0.66095 (18) | 0.0385 (4) | |
F2 | 0.29664 (19) | 0.19311 (8) | 0.8058 (2) | 0.0440 (5) | |
O4 | 0.73015 (19) | 0.05025 (7) | 0.98655 (18) | 0.0195 (4) | |
O3 | 0.7037 (2) | −0.03286 (7) | 0.79420 (19) | 0.0248 (4) | |
O1 | 0.5888 (2) | 0.18332 (7) | 0.62404 (18) | 0.0221 (4) | |
O2 | 0.6286 (2) | 0.17340 (7) | 0.89653 (19) | 0.0209 (4) | |
N3 | 0.6242 (2) | 0.07529 (9) | 0.7246 (2) | 0.0174 (4) | |
C7 | 0.9264 (3) | 0.04976 (11) | 0.7639 (3) | 0.0202 (5) | |
C6 | 0.3619 (3) | 0.13647 (12) | 0.7819 (3) | 0.0243 (6) | |
N2 | 0.6602 (2) | 0.13384 (9) | 0.2322 (2) | 0.0166 (4) | |
H2 | 0.673 (3) | 0.1214 (12) | 0.140 (2) | 0.02* | |
N1 | 0.9399 (2) | 0.15256 (9) | 0.2565 (2) | 0.0219 (4) | |
C2 | 1.0467 (3) | 0.15839 (14) | 0.3829 (3) | 0.0329 (7) | |
H2A | 1.0838 | 0.2025 | 0.3903 | 0.049* | |
H2B | 1.1366 | 0.1299 | 0.3683 | 0.049* | |
H2C | 0.9918 | 0.1467 | 0.4754 | 0.049* | |
C4 | 0.6675 (3) | 0.07490 (11) | 0.3251 (3) | 0.0206 (5) | |
H4A | 0.6492 | 0.0858 | 0.4306 | 0.031* | |
H4B | 0.7715 | 0.0553 | 0.3149 | 0.031* | |
H4C | 0.5867 | 0.0449 | 0.2911 | 0.031* | |
C3 | 1.0159 (3) | 0.16873 (17) | 0.1164 (3) | 0.0367 (7) | |
H3A | 0.9404 | 0.1645 | 0.0337 | 0.055* | |
H3B | 1.1047 | 0.1399 | 0.0996 | 0.055* | |
H3C | 1.054 | 0.2128 | 0.121 | 0.055* | |
C5 | 0.5036 (3) | 0.16500 (11) | 0.2400 (3) | 0.0208 (5) | |
H5A | 0.4219 | 0.1341 | 0.2128 | 0.031* | |
H5B | 0.5003 | 0.2011 | 0.1701 | 0.031* | |
H5C | 0.4854 | 0.1804 | 0.3424 | 0.031* | |
C1 | 0.7886 (3) | 0.18053 (11) | 0.2756 (3) | 0.0218 (5) | |
H1A | 0.7802 | 0.2192 | 0.2124 | 0.026* | |
H1B | 0.7751 | 0.1934 | 0.3816 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0148 (3) | 0.0143 (3) | 0.0142 (3) | 0.0019 (2) | 0.0018 (3) | 0.0008 (2) |
S2 | 0.0148 (3) | 0.0135 (3) | 0.0160 (3) | 0.0019 (2) | 0.0006 (2) | 0.0001 (2) |
F4 | 0.0225 (7) | 0.0283 (8) | 0.0300 (8) | −0.0057 (6) | 0.0071 (6) | −0.0016 (7) |
F5 | 0.0340 (8) | 0.0377 (9) | 0.0214 (8) | 0.0056 (7) | 0.0094 (6) | −0.0062 (6) |
F3 | 0.0291 (8) | 0.0415 (10) | 0.0334 (9) | −0.0058 (7) | 0.0131 (7) | 0.0096 (8) |
F6 | 0.0195 (7) | 0.0522 (10) | 0.0354 (9) | 0.0134 (7) | 0.0000 (7) | 0.0087 (8) |
F1 | 0.0197 (8) | 0.0589 (11) | 0.0371 (9) | −0.0018 (7) | −0.0073 (7) | −0.0010 (9) |
F2 | 0.0282 (9) | 0.0378 (9) | 0.0661 (13) | 0.0166 (7) | 0.0141 (8) | −0.0004 (8) |
O4 | 0.0220 (9) | 0.0202 (9) | 0.0164 (8) | 0.0048 (7) | 0.0021 (7) | 0.0015 (7) |
O3 | 0.0300 (9) | 0.0152 (8) | 0.0293 (10) | 0.0008 (7) | −0.0009 (8) | −0.0003 (7) |
O1 | 0.0281 (10) | 0.0203 (9) | 0.0180 (9) | 0.0019 (7) | 0.0051 (7) | 0.0026 (7) |
O2 | 0.0270 (9) | 0.0178 (9) | 0.0180 (9) | 0.0019 (7) | −0.0004 (7) | −0.0028 (7) |
N3 | 0.0182 (9) | 0.0174 (10) | 0.0166 (10) | 0.0030 (8) | −0.0027 (8) | −0.0041 (8) |
C7 | 0.0160 (11) | 0.0263 (13) | 0.0183 (13) | 0.0043 (10) | 0.0025 (11) | −0.0012 (11) |
C6 | 0.0187 (12) | 0.0254 (14) | 0.0288 (16) | 0.0052 (10) | 0.0018 (11) | 0.0024 (11) |
N2 | 0.0193 (10) | 0.0178 (10) | 0.0128 (11) | 0.0000 (7) | 0.0025 (9) | −0.0026 (8) |
N1 | 0.0168 (10) | 0.0270 (11) | 0.0218 (10) | −0.0001 (8) | 0.0021 (10) | −0.0036 (10) |
C2 | 0.0278 (15) | 0.0428 (17) | 0.0281 (15) | 0.0009 (13) | −0.0014 (12) | 0.0035 (13) |
C4 | 0.0227 (13) | 0.0173 (12) | 0.0220 (13) | −0.0001 (9) | 0.0021 (11) | 0.0022 (11) |
C3 | 0.0265 (15) | 0.063 (2) | 0.0212 (15) | 0.0016 (14) | 0.0039 (12) | −0.0037 (14) |
C5 | 0.0192 (12) | 0.0198 (12) | 0.0232 (13) | −0.0001 (9) | 0.0002 (11) | 0.0009 (12) |
C1 | 0.0212 (12) | 0.0188 (12) | 0.0255 (14) | −0.0020 (10) | 0.0019 (11) | −0.0047 (10) |
S1—O1 | 1.4315 (17) | N1—C1 | 1.425 (3) |
S1—O2 | 1.4368 (18) | N1—C3 | 1.448 (3) |
S1—N3 | 1.5722 (19) | N1—C2 | 1.450 (3) |
S1—C6 | 1.832 (3) | C2—H2A | 0.98 |
S2—O3 | 1.4240 (16) | C2—H2B | 0.98 |
S2—O4 | 1.4294 (17) | C2—H2C | 0.98 |
S2—N3 | 1.578 (2) | C4—H4A | 0.98 |
S2—C7 | 1.832 (2) | C4—H4B | 0.98 |
F4—C7 | 1.331 (3) | C4—H4C | 0.98 |
F5—C7 | 1.324 (3) | C3—H3A | 0.98 |
F3—C6 | 1.322 (3) | C3—H3B | 0.98 |
F6—C7 | 1.326 (3) | C3—H3C | 0.98 |
F1—C6 | 1.327 (3) | C5—H5A | 0.98 |
F2—C6 | 1.329 (3) | C5—H5B | 0.98 |
N2—C5 | 1.486 (3) | C5—H5C | 0.98 |
N2—C4 | 1.489 (3) | C1—H1A | 0.99 |
N2—C1 | 1.516 (3) | C1—H1B | 0.99 |
N2—H2 | 0.869 (17) | ||
O1—S1—O2 | 118.04 (10) | C1—N1—C2 | 115.9 (2) |
O1—S1—N3 | 109.54 (10) | C3—N1—C2 | 111.67 (19) |
O2—S1—N3 | 116.91 (10) | N1—C2—H2A | 109.5 |
O1—S1—C6 | 104.14 (11) | N1—C2—H2B | 109.5 |
O2—S1—C6 | 104.96 (11) | H2A—C2—H2B | 109.5 |
N3—S1—C6 | 100.69 (11) | N1—C2—H2C | 109.5 |
O3—S2—O4 | 118.68 (10) | H2A—C2—H2C | 109.5 |
O3—S2—N3 | 109.04 (10) | H2B—C2—H2C | 109.5 |
O4—S2—N3 | 116.12 (10) | N2—C4—H4A | 109.5 |
O3—S2—C7 | 104.23 (11) | N2—C4—H4B | 109.5 |
O4—S2—C7 | 104.85 (11) | H4A—C4—H4B | 109.5 |
N3—S2—C7 | 101.60 (11) | N2—C4—H4C | 109.5 |
S1—N3—S2 | 125.08 (13) | H4A—C4—H4C | 109.5 |
F5—C7—F6 | 108.61 (19) | H4B—C4—H4C | 109.5 |
F5—C7—F4 | 108.18 (19) | N1—C3—H3A | 109.5 |
F6—C7—F4 | 108.59 (19) | N1—C3—H3B | 109.5 |
F5—C7—S2 | 110.58 (16) | H3A—C3—H3B | 109.5 |
F6—C7—S2 | 110.36 (16) | N1—C3—H3C | 109.5 |
F4—C7—S2 | 110.45 (15) | H3A—C3—H3C | 109.5 |
F3—C6—F1 | 108.8 (2) | H3B—C3—H3C | 109.5 |
F3—C6—F2 | 108.2 (2) | N2—C5—H5A | 109.5 |
F1—C6—F2 | 108.6 (2) | N2—C5—H5B | 109.5 |
F3—C6—S1 | 110.45 (17) | H5A—C5—H5B | 109.5 |
F1—C6—S1 | 111.24 (17) | N2—C5—H5C | 109.5 |
F2—C6—S1 | 109.46 (18) | H5A—C5—H5C | 109.5 |
C5—N2—C4 | 112.00 (19) | H5B—C5—H5C | 109.5 |
C5—N2—C1 | 110.43 (18) | N1—C1—N2 | 110.71 (18) |
C4—N2—C1 | 111.44 (19) | N1—C1—H1A | 109.5 |
C5—N2—H2 | 107.0 (17) | N2—C1—H1A | 109.5 |
C4—N2—H2 | 105.7 (17) | N1—C1—H1B | 109.5 |
C1—N2—H2 | 110.0 (17) | N2—C1—H1B | 109.5 |
C1—N1—C3 | 114.3 (2) | H1A—C1—H1B | 108.1 |
O1—S1—N3—S2 | 138.03 (15) | N3—S2—C7—F4 | 56.75 (17) |
O2—S1—N3—S2 | 0.3 (2) | O1—S1—C6—F3 | 176.83 (16) |
C6—S1—N3—S2 | −112.65 (16) | O2—S1—C6—F3 | −58.5 (2) |
O3—S2—N3—S1 | 159.72 (14) | N3—S1—C6—F3 | 63.3 (2) |
O4—S2—N3—S1 | 22.45 (19) | O1—S1—C6—F1 | 55.95 (19) |
C7—S2—N3—S1 | −90.63 (16) | O2—S1—C6—F1 | −179.36 (16) |
O3—S2—C7—F5 | 50.34 (18) | N3—S1—C6—F1 | −57.55 (19) |
O4—S2—C7—F5 | 175.75 (15) | O1—S1—C6—F2 | −64.1 (2) |
N3—S2—C7—F5 | −62.96 (18) | O2—S1—C6—F2 | 60.59 (19) |
O3—S2—C7—F6 | −69.86 (18) | N3—S1—C6—F2 | −177.60 (18) |
O4—S2—C7—F6 | 55.55 (19) | C3—N1—C1—N2 | 97.3 (2) |
N3—S2—C7—F6 | 176.83 (17) | C2—N1—C1—N2 | −130.6 (2) |
O3—S2—C7—F4 | 170.06 (16) | C5—N2—C1—N1 | −175.3 (2) |
O4—S2—C7—F4 | −64.54 (18) | C4—N2—C1—N1 | 59.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O4i | 0.87 (2) | 2.08 (2) | 2.868 (3) | 150 (2) |
N2—H2···O2i | 0.87 (2) | 2.46 (2) | 3.115 (2) | 133 (2) |
C5—H5A···O3ii | 0.98 | 2.38 | 3.299 (3) | 156 |
C4—H4C···O3ii | 0.98 | 2.59 | 3.444 (3) | 145 |
C5—H5B···O1iii | 0.98 | 2.57 | 3.423 (3) | 145 |
Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y, −z+1; (iii) x, −y+1/2, z−1/2. |
References
Bentivoglio, G., Schwärzler, A., Wurst, K., Kahlenberg, V., Nauer, G., Bonn, G., Schottenberger, H. & Laus, G. (2009). J. Chem. Crystallogr. 39, 662–668. Web of Science CSD CrossRef CAS Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Cardenas, A. J. P. & O'Hagan, M. (2016). Acta Cryst. E72, 1290–1292. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Greaves, T. L. & Drummond, C. J. (2008). Chem. Rev. 108, 206–237. CrossRef PubMed CAS Google Scholar
Laus, G., Hummel, M., Többens, D. M., Gelbrich, T., Kahlenberg, V., Wurst, K., Griesser, U. J. & Schottenberger, H. (2011). CrystEngComm, 13, 5439–5446. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.