organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-N′-Benzyl­­idene-2-phenyl­quinoline-4-carbo­hydrazide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq, and fDepartment of Chemistry, College of Education, Tikrit University, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 September 2016; accepted 2 October 2016; online 18 October 2016)

In the title compound, C23H17N3O, there is a short intramolecular C—H⋯O contact present, and the conformation about the C=N bond is E. The phenyl and benzyl­idene rings make dihedral angles of 28.21 (15) and 37.65 (14)° with the mean plane of the quinoline moiety. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains propagating along [001], with the O atom accepting three hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

It has been reported that quinoline derivatives serve as antagonists (Bennacef et al., 2007[Bennacef, I., Perrio, C., Lasne, M. C. & Barré, L. (2007). J. Org. Chem. 72, 2161-2165.]), analgesic agents (Gopalsamy & Pallai, 1997[Gopalsamy, A. & Pallai, P. V. (1997). Tetrahedron Lett. 38, 907-910.]), 5HT3 antagonists (Anzini et al., 1995[Anzini, M., Cappelli, A., Vomero, S., Giorgi, G., Langer, T., Hamon, M., Merahi, N., Emerit, B. M., Cagnotto, A., Skorupska, M., Mennini, T. & Pinto, J. C. (1995). J. Med. Chem. 38, 2692-2704.]) and structural subunits of natural products (Sivaprasad et al., 2006[Sivaprasad, G., Rajesh, R. & Perumal, P. T. (2006). Tetrahedron Lett. 47, 1783-1785.]). Among the compounds of a quinoline series, Atophan and its derivatives have shown a variety of biological effects (Muscia et al., 2008[Muscia, G. C., Carnevale, J. P., Bollini, M. & Asís, S. E. (2008). J. Heterocycl. Chem. 45, 611-614.]; Wang et al., 2009[Wang, L.-M., Hu, L., Chen, H.-J., Sui, Y.-Y. & Shen, W. (2009). J. Fluorine Chem. 130, 406-409.]). Moreover, hydrazide-hydrazone compounds are found to be associated with various biological activities such as anti­microbial, anti­convulsant, analgesic, anti-inflammatory, anti-platelet, anti-tubercular and anti-tumour properties (Mohamed et al., 2015[Mohamed, S. K., Mague, J. T., Akkurt, M., Mohamed, A. F. & Albayati, M. R. (2015). Acta Cryst. E71, o957-o958.]). As part of our studies in this area, we now report the crystal structure of the title compound.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The quinoline moiety is slightly twisted as indicated by the dihedral angle of 2.27 (16)° between the C1–C6 and N1/C6–C9 rings. The phenyl (C10–C15) and benzyl­idene (C18–C23) rings make dihedral angles of 28.21 (15) and 37.65 (14)°, respectively, with the mean plane of the quinoline moiety. The conformation about the C17=N3 bond is E and there is a short C5—H5⋯O1 contact in the mol­ecule (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1 0.95 2.34 2.939 (3) 121
N2—H2A⋯O1i 0.88 (4) 2.08 (4) 2.907 (3) 155 (4)
C8—H8⋯O1i 0.95 2.50 3.288 (3) 140
C17—H17⋯O1i 0.95 2.52 3.268 (3) 136
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and 50% probability displacement ellipsoids.

In the crystal, N2—H2A⋯O1i, C8—H8⋯O1i and C17—H17⋯O1i [symmetry code: (i) x, −y + 1, z − [{1\over 2}]] hydrogen bonds link the mol­ecules into chains along the c-axis direction (Table 1[link] and Fig. 2[link]).

[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The N—H⋯O and C—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, only H atoms H26, H8 and H17 have been included.

Synthesis and crystallization

The title compound was prepared in 89% yield according to a reported procedure (Mohamed et al., 2016[Mohamed, S. K., Mague, J. T., Akkurt, M., Mohamed, A. F. & Albayati, M. R. (2016). IUCrData, 1, x160662.]). Colourless needle-like crystals of the title compound were obtained by recrystallization from ethanol solution (m.p. 515–518 K).

Refinement

Crystal and refinement details are given in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C23H17N3O
Mr 351.39
Crystal system, space group Monoclinic, Pc
Temperature (K) 150
a, b, c (Å) 7.6704 (8), 13.2898 (13), 9.0627 (9)
β (°) 107.220 (6)
V3) 882.42 (16)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.66
Crystal size (mm) 0.24 × 0.07 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.83, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 6668, 2637, 2394
Rint 0.037
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.087, 1.07
No. of reflections 2637
No. of parameters 250
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.16
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-N'-Benzylidene-2-phenylquinoline-4-carbohydrazide top
Crystal data top
C23H17N3OF(000) = 368
Mr = 351.39Dx = 1.323 Mg m3
Monoclinic, PcCu Kα radiation, λ = 1.54178 Å
a = 7.6704 (8) ÅCell parameters from 5448 reflections
b = 13.2898 (13) Åθ = 3.3–72.3°
c = 9.0627 (9) ŵ = 0.66 mm1
β = 107.220 (6)°T = 150 K
V = 882.42 (16) Å3Needles, colourless
Z = 20.24 × 0.07 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2637 independent reflections
Radiation source: INCOATEC IµS micro-focus source2394 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.4167 pixels mm-1θmax = 72.3°, θmin = 3.3°
ω scansh = 98
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1615
Tmin = 0.83, Tmax = 0.97l = 1011
6668 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.1673P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.16 e Å3
2637 reflectionsΔρmin = 0.16 e Å3
250 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0046 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Refined as an inversion twin
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.2 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5328 (3)0.41857 (14)0.9098 (2)0.0351 (5)
N10.3365 (4)0.19467 (18)0.4307 (3)0.0312 (5)
N20.6135 (4)0.50398 (17)0.7228 (3)0.0296 (5)
H2A0.604 (5)0.510 (3)0.624 (4)0.045 (10)*
N30.6784 (3)0.58400 (17)0.8203 (3)0.0296 (5)
C10.4132 (4)0.1685 (2)0.5821 (3)0.0290 (6)
C20.4235 (4)0.0645 (2)0.6177 (3)0.0344 (7)
H20.37280.01700.53840.041*
C30.5054 (5)0.0318 (2)0.7645 (3)0.0361 (7)
H30.51120.03820.78740.043*
C40.5811 (5)0.1021 (2)0.8818 (3)0.0360 (7)
H40.64190.07900.98320.043*
C50.5688 (4)0.2030 (2)0.8526 (3)0.0331 (7)
H50.61860.24920.93430.040*
C60.4826 (4)0.2396 (2)0.7019 (3)0.0282 (6)
C70.4633 (4)0.3437 (2)0.6587 (3)0.0280 (6)
C80.3796 (4)0.3683 (2)0.5077 (3)0.0294 (6)
H80.36170.43700.47800.035*
C90.3195 (4)0.2915 (2)0.3955 (3)0.0296 (6)
C100.2341 (4)0.3167 (2)0.2296 (3)0.0318 (7)
C110.1402 (5)0.4069 (2)0.1854 (4)0.0373 (7)
H110.13630.45520.26160.045*
C120.0520 (5)0.4267 (3)0.0301 (4)0.0460 (8)
H120.01350.48770.00070.055*
C130.0603 (5)0.3570 (3)0.0810 (4)0.0479 (9)
H130.00090.36980.18680.058*
C140.1574 (6)0.2689 (3)0.0383 (4)0.0477 (9)
H140.16590.22240.11550.057*
C150.2429 (5)0.2475 (3)0.1164 (4)0.0400 (8)
H150.30710.18590.14490.048*
C160.5387 (4)0.4248 (2)0.7759 (3)0.0278 (6)
C170.7413 (4)0.6576 (2)0.7606 (3)0.0293 (6)
H170.74240.65300.65630.035*
C180.8117 (4)0.7491 (2)0.8492 (3)0.0278 (6)
C190.8098 (5)0.7608 (2)1.0015 (3)0.0349 (7)
H190.76400.70831.05100.042*
C200.8744 (5)0.8485 (2)1.0807 (4)0.0381 (7)
H200.87150.85651.18410.046*
C210.9431 (5)0.9247 (2)1.0102 (4)0.0381 (7)
H210.98690.98501.06530.046*
C220.9483 (5)0.9136 (2)0.8603 (4)0.0371 (7)
H220.99760.96550.81250.044*
C230.8806 (4)0.8257 (2)0.7794 (3)0.0328 (7)
H230.88180.81840.67550.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0532 (14)0.0323 (11)0.0202 (10)0.0008 (10)0.0114 (9)0.0002 (8)
N10.0352 (15)0.0334 (13)0.0238 (12)0.0015 (11)0.0065 (10)0.0007 (10)
N20.0400 (15)0.0293 (12)0.0177 (10)0.0012 (10)0.0058 (9)0.0007 (9)
N30.0354 (15)0.0285 (12)0.0223 (11)0.0006 (10)0.0044 (10)0.0023 (9)
C10.0334 (16)0.0288 (14)0.0237 (13)0.0004 (12)0.0070 (11)0.0004 (11)
C20.0410 (19)0.0311 (15)0.0302 (16)0.0017 (14)0.0093 (14)0.0037 (12)
C30.045 (2)0.0270 (15)0.0353 (16)0.0014 (13)0.0107 (14)0.0043 (12)
C40.047 (2)0.0327 (16)0.0254 (15)0.0025 (14)0.0064 (13)0.0031 (11)
C50.0429 (19)0.0321 (15)0.0218 (14)0.0003 (13)0.0058 (13)0.0000 (12)
C60.0323 (17)0.0297 (15)0.0222 (13)0.0016 (12)0.0076 (11)0.0011 (11)
C70.0326 (17)0.0275 (14)0.0233 (13)0.0008 (12)0.0075 (11)0.0006 (11)
C80.0361 (17)0.0291 (14)0.0213 (13)0.0004 (12)0.0057 (11)0.0015 (11)
C90.0308 (17)0.0338 (15)0.0229 (13)0.0011 (13)0.0059 (12)0.0002 (11)
C100.0309 (17)0.0399 (17)0.0219 (14)0.0039 (13)0.0038 (12)0.0002 (12)
C110.0402 (19)0.0422 (17)0.0254 (15)0.0001 (14)0.0034 (12)0.0025 (13)
C120.044 (2)0.052 (2)0.0355 (18)0.0004 (16)0.0009 (14)0.0093 (15)
C130.049 (2)0.065 (2)0.0227 (16)0.0093 (18)0.0005 (14)0.0049 (15)
C140.054 (2)0.061 (2)0.0237 (15)0.0054 (18)0.0058 (14)0.0045 (15)
C150.046 (2)0.0445 (18)0.0262 (15)0.0002 (15)0.0060 (13)0.0019 (13)
C160.0352 (17)0.0272 (14)0.0192 (14)0.0029 (12)0.0049 (11)0.0004 (10)
C170.0337 (17)0.0315 (15)0.0214 (13)0.0016 (12)0.0060 (11)0.0018 (11)
C180.0279 (16)0.0308 (14)0.0220 (13)0.0019 (12)0.0033 (11)0.0000 (11)
C190.0392 (18)0.0399 (17)0.0260 (15)0.0053 (14)0.0103 (13)0.0014 (12)
C200.043 (2)0.0463 (18)0.0248 (14)0.0055 (15)0.0104 (13)0.0066 (13)
C210.0415 (19)0.0350 (17)0.0349 (17)0.0007 (14)0.0068 (14)0.0077 (13)
C220.0451 (19)0.0302 (15)0.0341 (16)0.0011 (13)0.0090 (13)0.0016 (12)
C230.0398 (19)0.0330 (15)0.0236 (14)0.0033 (13)0.0065 (12)0.0022 (11)
Geometric parameters (Å, º) top
O1—C161.231 (3)C10—C151.395 (4)
N1—C91.324 (3)C11—C121.394 (4)
N1—C11.367 (4)C11—H110.9500
N2—C161.353 (4)C12—C131.382 (5)
N2—N31.378 (3)C12—H120.9500
N2—H2A0.88 (4)C13—C141.381 (5)
N3—C171.279 (4)C13—H130.9500
C1—C21.416 (4)C14—C151.390 (5)
C1—C61.418 (4)C14—H140.9500
C2—C31.363 (4)C15—H150.9500
C2—H20.9500C17—C181.469 (4)
C3—C41.406 (4)C17—H170.9500
C3—H30.9500C18—C231.383 (4)
C4—C51.365 (4)C18—C191.393 (4)
C4—H40.9500C19—C201.382 (4)
C5—C61.416 (4)C19—H190.9500
C5—H50.9500C20—C211.383 (5)
C6—C71.434 (4)C20—H200.9500
C7—C81.367 (4)C21—C221.379 (4)
C7—C161.504 (4)C21—H210.9500
C8—C91.418 (4)C22—C231.395 (4)
C8—H80.9500C22—H220.9500
C9—C101.489 (4)C23—H230.9500
C10—C111.395 (4)
C9—N1—C1118.1 (2)C10—C11—H11119.8
C16—N2—N3118.8 (2)C13—C12—C11119.7 (3)
C16—N2—H2A121 (2)C13—C12—H12120.1
N3—N2—H2A119 (2)C11—C12—H12120.1
C17—N3—N2115.4 (2)C14—C13—C12120.1 (3)
N1—C1—C2117.1 (2)C14—C13—H13120.0
N1—C1—C6123.4 (2)C12—C13—H13120.0
C2—C1—C6119.5 (3)C13—C14—C15120.7 (3)
C3—C2—C1120.9 (3)C13—C14—H14119.7
C3—C2—H2119.6C15—C14—H14119.7
C1—C2—H2119.6C14—C15—C10119.7 (3)
C2—C3—C4119.6 (3)C14—C15—H15120.1
C2—C3—H3120.2C10—C15—H15120.1
C4—C3—H3120.2O1—C16—N2123.2 (3)
C5—C4—C3121.2 (3)O1—C16—C7122.0 (3)
C5—C4—H4119.4N2—C16—C7114.9 (2)
C3—C4—H4119.4N3—C17—C18121.7 (2)
C4—C5—C6120.6 (3)N3—C17—H17119.1
C4—C5—H5119.7C18—C17—H17119.1
C6—C5—H5119.7C23—C18—C19119.2 (3)
C5—C6—C1118.2 (2)C23—C18—C17119.2 (2)
C5—C6—C7125.1 (3)C19—C18—C17121.6 (3)
C1—C6—C7116.6 (2)C20—C19—C18120.1 (3)
C8—C7—C6118.9 (3)C20—C19—H19120.0
C8—C7—C16120.2 (3)C18—C19—H19120.0
C6—C7—C16120.8 (3)C19—C20—C21120.4 (3)
C7—C8—C9120.2 (3)C19—C20—H20119.8
C7—C8—H8119.9C21—C20—H20119.8
C9—C8—H8119.9C22—C21—C20120.2 (3)
N1—C9—C8122.6 (3)C22—C21—H21119.9
N1—C9—C10116.4 (2)C20—C21—H21119.9
C8—C9—C10121.0 (3)C21—C22—C23119.5 (3)
C11—C10—C15119.3 (3)C21—C22—H22120.2
C11—C10—C9121.2 (3)C23—C22—H22120.2
C15—C10—C9119.5 (3)C18—C23—C22120.6 (3)
C12—C11—C10120.4 (3)C18—C23—H23119.7
C12—C11—H11119.8C22—C23—H23119.7
C16—N2—N3—C17177.6 (3)C8—C9—C10—C15154.4 (3)
C9—N1—C1—C2177.6 (3)C15—C10—C11—C121.6 (5)
C9—N1—C1—C62.9 (4)C9—C10—C11—C12176.2 (3)
N1—C1—C2—C3177.0 (3)C10—C11—C12—C131.0 (5)
C6—C1—C2—C32.5 (5)C11—C12—C13—C140.8 (6)
C1—C2—C3—C40.2 (5)C12—C13—C14—C152.1 (6)
C2—C3—C4—C52.2 (5)C13—C14—C15—C101.5 (5)
C3—C4—C5—C61.4 (5)C11—C10—C15—C140.4 (5)
C4—C5—C6—C11.4 (4)C9—C10—C15—C14177.5 (3)
C4—C5—C6—C7179.6 (3)N3—N2—C16—O13.3 (4)
N1—C1—C6—C5176.2 (3)N3—N2—C16—C7177.0 (3)
C2—C1—C6—C53.3 (4)C8—C7—C16—O1144.0 (3)
N1—C1—C6—C72.2 (4)C6—C7—C16—O137.9 (4)
C2—C1—C6—C7178.3 (3)C8—C7—C16—N236.4 (4)
C5—C6—C7—C8178.8 (3)C6—C7—C16—N2141.7 (3)
C1—C6—C7—C80.5 (4)N2—N3—C17—C18178.7 (3)
C5—C6—C7—C160.6 (4)N3—C17—C18—C23179.0 (3)
C1—C6—C7—C16177.6 (3)N3—C17—C18—C191.3 (5)
C6—C7—C8—C92.4 (4)C23—C18—C19—C200.7 (5)
C16—C7—C8—C9175.8 (3)C17—C18—C19—C20179.0 (3)
C1—N1—C9—C80.9 (4)C18—C19—C20—C210.7 (5)
C1—N1—C9—C10179.6 (3)C19—C20—C21—C220.2 (5)
C7—C8—C9—N11.8 (5)C20—C21—C22—C231.2 (5)
C7—C8—C9—C10177.8 (3)C19—C18—C23—C220.3 (5)
N1—C9—C10—C11152.7 (3)C17—C18—C23—C22179.9 (3)
C8—C9—C10—C1127.8 (4)C21—C22—C23—C181.2 (5)
N1—C9—C10—C1525.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.952.342.939 (3)121
N2—H2A···O1i0.88 (4)2.08 (4)2.907 (3)155 (4)
C8—H8···O1i0.952.503.288 (3)140
C17—H17···O1i0.952.523.268 (3)136
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAnzini, M., Cappelli, A., Vomero, S., Giorgi, G., Langer, T., Hamon, M., Merahi, N., Emerit, B. M., Cagnotto, A., Skorupska, M., Mennini, T. & Pinto, J. C. (1995). J. Med. Chem. 38, 2692–2704.  CrossRef CAS PubMed Google Scholar
First citationBennacef, I., Perrio, C., Lasne, M. C. & Barré, L. (2007). J. Org. Chem. 72, 2161–2165.  CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGopalsamy, A. & Pallai, P. V. (1997). Tetrahedron Lett. 38, 907–910.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Mague, J. T., Akkurt, M., Mohamed, A. F. & Albayati, M. R. (2015). Acta Cryst. E71, o957–o958.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Mague, J. T., Akkurt, M., Mohamed, A. F. & Albayati, M. R. (2016). IUCrData, 1, x160662.  Google Scholar
First citationMuscia, G. C., Carnevale, J. P., Bollini, M. & Asís, S. E. (2008). J. Heterocycl. Chem. 45, 611–614.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSivaprasad, G., Rajesh, R. & Perumal, P. T. (2006). Tetrahedron Lett. 47, 1783–1785.  CrossRef CAS Google Scholar
First citationWang, L.-M., Hu, L., Chen, H.-J., Sui, Y.-Y. & Shen, W. (2009). J. Fluorine Chem. 130, 406–409.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds