organic compounds
Diethyl 2,2′-bipyridine-4,4′-dicarboxylate
aDepartment of Chemistry, Wichita State University, Wichita, KS 67260, USA, and bCrystallographic laboratory, University of California, San Diego, LaJolla, CA 92093, USA
*Correspondence e-mail: paul.rillema@wichita.edu
The title bipyridine derivative, C16H16N2O4, crystallized with two half molecules in the The whole molecules (A and B) are generated by inversion symmetry with the mid-points of the bridging C—C bonds of the bipyridine units being located on crystallographic inversion centers. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming sheets parallel to (120). The sheets are linked by C—H⋯N hydrogen bonds, forming a three-dimensional framework.
Keywords: crystal structure; bipyridine; dicarboxylate; hydrogen bonding; bidentate ligand; electron-withdrawing group.
CCDC reference: 1507876
Structure description
Dimmine ligands, such as the title compound, have been used to coordinate to transition metals, viz. Ru2+, Pt2+, and Re1+, for use in solar energy conversion studies due to their excellent electronic properties (Cruz et al., 2010; Rillema et al., 2015; Villegas et al., 2005). Upon electrons are channeled from the metal center to the diimmine ligand on its pathway to the ground state.
The molecular structure of the two independent molecules of the title compound (A and B) are illustrated in Fig. 1. In both molecules, the two pyridine rings are arranged such that the pyridine N atoms are trans to one another. Molecule A is more planar than molecule B, with the ethyl carboxylate group [C—C—O—C(=O)] being inclined to the pyridine ring by 2.11 (15)° in A, and 5.69 (15)° in B.
The bond lengths and bond angles of the title free ligand are basically the same as those observed for the coordinated ligand in Pt(bph)(4,4′-diethoxycarbonyl-2,2′-bipyridine) (Rillema et al., 2015). Upon coordination to transition metals, the two pyridine rings have the pyridine N atoms cis to one another, resulting in π–π delocalization over the whole ligand.
In the crystal, molecules are linked by C—H⋯O hydrogen bonds (Table 1), forming sheets parallel to (120), as illustrated in Fig. 2. The sheets are linked by C—H⋯N hydrogen bonds, forming a three-dimensional framework (Table 1 and Fig. 3).
Synthesis and crystallization
The title compound was prepared in two steps according to previously published procedures. In step one, 4,4′-dimethyl-2,2′-bipyridine, purchased commercially, was oxidized forming 4,4′-dicarboxy-2,2′-bipyridine (Oki et al., 1995). In step two, the dicarboxy compound was converted to the diethoxycarbonyl derivative (Ciana et al., 1990). The vapor diffusion technique was used to obtain single crystals of the title compound. It was dissolved in dichloromethane and placed in a center vial, while the outer vial contained methanol.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1507876
https://doi.org/10.1107/S2414314616015479/su4079sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616015479/su4079Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616015479/su4079Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHEXLS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C16H16N2O4 | Z = 2 |
Mr = 300.31 | F(000) = 316 |
Triclinic, P1 | Dx = 1.380 Mg m−3 |
a = 3.9059 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 13.493 (3) Å | Cell parameters from 2248 reflections |
c = 13.767 (3) Å | θ = 3.0–25.0° |
α = 92.212 (7)° | µ = 0.10 mm−1 |
β = 93.163 (7)° | T = 100 K |
γ = 93.016 (7)° | Plate, colorless |
V = 722.8 (3) Å3 | 0.13 × 0.08 × 0.06 mm |
Bruker APEXII Ultra diffractometer | 2664 independent reflections |
Radiation source: Micro Focus Rotating Anode, Bruker TXS | 1699 reflections with I > 2σ(I) |
Double Bounce Multilayer Mirrors monochromator | Rint = 0.054 |
Detector resolution: 7.9 pixels mm-1 | θmax = 25.4°, θmin = 1.5° |
ω and φ scans | h = −4→4 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −16→16 |
Tmin = 0.066, Tmax = 0.092 | l = −16→16 |
10150 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0623P)2 + 0.352P] where P = (Fo2 + 2Fc2)/3 |
2664 reflections | (Δ/σ)max < 0.001 |
201 parameters | Δρmax = 0.59 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.6443 (6) | −0.08269 (16) | 0.09213 (16) | 0.0229 (6) | |
O1 | 0.1227 (5) | 0.21648 (14) | 0.24091 (14) | 0.0322 (5) | |
O2 | 0.2666 (5) | 0.12418 (13) | 0.36775 (13) | 0.0267 (5) | |
C1 | 0.5052 (6) | −0.00246 (18) | 0.05424 (19) | 0.0213 (6) | |
C2 | 0.3798 (7) | 0.0728 (2) | 0.1117 (2) | 0.0227 (6) | |
H2 | 0.2878 | 0.1291 | 0.0827 | 0.027* | |
C3 | 0.3909 (7) | 0.06454 (19) | 0.2116 (2) | 0.0230 (7) | |
C4 | 0.5353 (7) | −0.0181 (2) | 0.2512 (2) | 0.0250 (7) | |
H4 | 0.5496 | −0.0255 | 0.3196 | 0.030* | |
C5 | 0.6573 (7) | −0.0889 (2) | 0.1889 (2) | 0.0243 (7) | |
H5 | 0.7558 | −0.1452 | 0.2163 | 0.029* | |
C6 | 0.2460 (7) | 0.1439 (2) | 0.2732 (2) | 0.0238 (7) | |
C7 | 0.1308 (7) | 0.1979 (2) | 0.43362 (19) | 0.0268 (7) | |
H7A | −0.1157 | 0.2057 | 0.4167 | 0.032* | |
H7B | 0.2562 | 0.2631 | 0.4290 | 0.032* | |
C8 | 0.1788 (8) | 0.1608 (2) | 0.5350 (2) | 0.0322 (8) | |
H8A | 0.0535 | 0.0963 | 0.5385 | 0.048* | |
H8B | 0.0904 | 0.2084 | 0.5817 | 0.048* | |
H8C | 0.4237 | 0.1535 | 0.5508 | 0.048* | |
N1' | 0.6531 (6) | 0.41872 (16) | 0.40638 (16) | 0.0225 (6) | |
O1' | 0.1233 (5) | 0.71739 (14) | 0.26347 (13) | 0.0307 (5) | |
O2' | 0.2484 (5) | 0.62205 (13) | 0.13410 (13) | 0.0257 (5) | |
C1' | 0.5100 (6) | 0.49830 (18) | 0.44587 (19) | 0.0210 (6) | |
C2' | 0.3829 (7) | 0.57364 (19) | 0.39046 (19) | 0.0214 (6) | |
H2' | 0.2889 | 0.6296 | 0.4209 | 0.026* | |
C3' | 0.3960 (7) | 0.56565 (19) | 0.2899 (2) | 0.0213 (6) | |
C4' | 0.5453 (7) | 0.4843 (2) | 0.2487 (2) | 0.0231 (7) | |
H4' | 0.5623 | 0.4774 | 0.1803 | 0.028* | |
C5' | 0.6691 (7) | 0.4135 (2) | 0.3096 (2) | 0.0241 (7) | |
H5' | 0.7713 | 0.3580 | 0.2810 | 0.029* | |
C6' | 0.2446 (7) | 0.6440 (2) | 0.2295 (2) | 0.0219 (6) | |
C7' | 0.0956 (8) | 0.6935 (2) | 0.0684 (2) | 0.0325 (7) | |
H7'A | 0.2167 | 0.7597 | 0.0789 | 0.039* | |
H7'B | −0.1497 | 0.6999 | 0.0808 | 0.039* | |
C8' | 0.1316 (9) | 0.6543 (2) | −0.0342 (2) | 0.0401 (8) | |
H8'A | 0.0362 | 0.7007 | −0.0802 | 0.060* | |
H8'B | 0.0070 | 0.5894 | −0.0441 | 0.060* | |
H8'C | 0.3750 | 0.6473 | −0.0452 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0252 (13) | 0.0172 (12) | 0.0269 (14) | 0.0071 (10) | 0.0006 (10) | 0.0006 (10) |
O1 | 0.0430 (13) | 0.0242 (11) | 0.0301 (12) | 0.0145 (10) | −0.0005 (10) | −0.0027 (9) |
O2 | 0.0306 (11) | 0.0268 (11) | 0.0235 (11) | 0.0094 (9) | 0.0026 (8) | −0.0026 (8) |
C1 | 0.0165 (14) | 0.0190 (15) | 0.0278 (15) | 0.0007 (12) | −0.0008 (12) | −0.0017 (12) |
C2 | 0.0215 (15) | 0.0172 (14) | 0.0293 (17) | 0.0037 (12) | −0.0014 (12) | 0.0005 (12) |
C3 | 0.0185 (15) | 0.0202 (15) | 0.0301 (17) | 0.0034 (12) | −0.0001 (12) | −0.0015 (12) |
C4 | 0.0248 (16) | 0.0262 (16) | 0.0246 (16) | 0.0055 (13) | 0.0021 (13) | 0.0008 (13) |
C5 | 0.0242 (15) | 0.0193 (15) | 0.0305 (17) | 0.0093 (12) | 0.0016 (12) | 0.0038 (12) |
C6 | 0.0201 (15) | 0.0250 (16) | 0.0258 (17) | 0.0035 (13) | −0.0015 (12) | −0.0023 (13) |
C7 | 0.0290 (16) | 0.0262 (15) | 0.0255 (16) | 0.0089 (13) | 0.0022 (12) | −0.0072 (12) |
C8 | 0.0318 (18) | 0.0359 (18) | 0.0294 (18) | 0.0072 (14) | 0.0050 (13) | −0.0032 (14) |
N1' | 0.0224 (13) | 0.0187 (12) | 0.0264 (14) | 0.0045 (10) | 0.0011 (10) | −0.0022 (10) |
O1' | 0.0428 (13) | 0.0249 (11) | 0.0259 (12) | 0.0169 (10) | 0.0033 (9) | −0.0007 (9) |
O2' | 0.0327 (11) | 0.0242 (11) | 0.0206 (11) | 0.0105 (9) | −0.0005 (8) | −0.0023 (8) |
C1' | 0.0195 (15) | 0.0157 (15) | 0.0278 (15) | 0.0015 (12) | 0.0021 (12) | −0.0021 (12) |
C2' | 0.0220 (15) | 0.0157 (14) | 0.0269 (17) | 0.0057 (12) | 0.0047 (12) | −0.0030 (12) |
C3' | 0.0176 (14) | 0.0177 (14) | 0.0282 (17) | 0.0015 (12) | 0.0024 (12) | −0.0046 (12) |
C4' | 0.0235 (15) | 0.0240 (15) | 0.0221 (15) | 0.0053 (13) | 0.0010 (12) | −0.0006 (13) |
C5' | 0.0228 (15) | 0.0184 (14) | 0.0312 (18) | 0.0066 (12) | 0.0033 (12) | −0.0067 (12) |
C6' | 0.0194 (15) | 0.0208 (15) | 0.0252 (17) | 0.0008 (12) | 0.0003 (12) | −0.0004 (12) |
C7' | 0.0352 (18) | 0.0308 (17) | 0.0319 (18) | 0.0045 (14) | 0.0061 (14) | −0.0019 (14) |
C8' | 0.044 (2) | 0.047 (2) | 0.0287 (19) | 0.0099 (16) | 0.0006 (15) | −0.0062 (15) |
N1—C1 | 1.347 (3) | N1'—C1' | 1.346 (3) |
N1—C5 | 1.336 (3) | N1'—C5' | 1.336 (3) |
O1—C6 | 1.203 (3) | O1'—C6' | 1.209 (3) |
O2—C6 | 1.338 (3) | O2'—C6' | 1.336 (3) |
O2—C7 | 1.460 (3) | O2'—C7' | 1.474 (3) |
C1—C1i | 1.496 (5) | C1'—C1'ii | 1.496 (5) |
C1—C2 | 1.389 (4) | C1'—C2' | 1.390 (4) |
C2—H2 | 0.9500 | C2'—H2' | 0.9500 |
C2—C3 | 1.382 (4) | C2'—C3' | 1.388 (4) |
C3—C4 | 1.392 (4) | C3'—C4' | 1.386 (4) |
C3—C6 | 1.494 (4) | C3'—C6' | 1.496 (4) |
C4—H4 | 0.9500 | C4'—H4' | 0.9500 |
C4—C5 | 1.381 (4) | C4'—C5' | 1.384 (4) |
C5—H5 | 0.9500 | C5'—H5' | 0.9500 |
C7—H7A | 0.9900 | C7'—H7'A | 0.9900 |
C7—H7B | 0.9900 | C7'—H7'B | 0.9900 |
C7—C8 | 1.507 (4) | C7'—C8' | 1.505 (4) |
C8—H8A | 0.9800 | C8'—H8'A | 0.9800 |
C8—H8B | 0.9800 | C8'—H8'B | 0.9800 |
C8—H8C | 0.9800 | C8'—H8'C | 0.9800 |
C5—N1—C1 | 117.6 (2) | C5'—N1'—C1' | 117.3 (2) |
C6—O2—C7 | 115.9 (2) | C6'—O2'—C7' | 116.5 (2) |
N1—C1—C1i | 116.4 (3) | N1'—C1'—C1'ii | 116.4 (3) |
N1—C1—C2 | 122.5 (2) | N1'—C1'—C2' | 122.8 (2) |
C2—C1—C1i | 121.1 (3) | C2'—C1'—C1'ii | 120.8 (3) |
C1—C2—H2 | 120.4 | C1'—C2'—H2' | 120.6 |
C3—C2—C1 | 119.1 (2) | C3'—C2'—C1' | 118.8 (2) |
C3—C2—H2 | 120.4 | C3'—C2'—H2' | 120.6 |
C2—C3—C4 | 118.6 (2) | C2'—C3'—C6' | 119.1 (2) |
C2—C3—C6 | 119.1 (2) | C4'—C3'—C2' | 118.7 (2) |
C4—C3—C6 | 122.3 (3) | C4'—C3'—C6' | 122.1 (2) |
C3—C4—H4 | 120.7 | C3'—C4'—H4' | 120.8 |
C5—C4—C3 | 118.5 (3) | C5'—C4'—C3' | 118.5 (3) |
C5—C4—H4 | 120.7 | C5'—C4'—H4' | 120.8 |
N1—C5—C4 | 123.5 (2) | N1'—C5'—C4' | 123.8 (3) |
N1—C5—H5 | 118.2 | N1'—C5'—H5' | 118.1 |
C4—C5—H5 | 118.2 | C4'—C5'—H5' | 118.1 |
O1—C6—O2 | 124.3 (3) | O1'—C6'—O2' | 123.9 (2) |
O1—C6—C3 | 123.6 (3) | O1'—C6'—C3' | 123.6 (2) |
O2—C6—C3 | 112.1 (2) | O2'—C6'—C3' | 112.4 (2) |
O2—C7—H7A | 110.3 | O2'—C7'—H7'A | 110.3 |
O2—C7—H7B | 110.3 | O2'—C7'—H7'B | 110.3 |
O2—C7—C8 | 106.9 (2) | O2'—C7'—C8' | 107.2 (2) |
H7A—C7—H7B | 108.6 | H7'A—C7'—H7'B | 108.5 |
C8—C7—H7A | 110.3 | C8'—C7'—H7'A | 110.3 |
C8—C7—H7B | 110.3 | C8'—C7'—H7'B | 110.3 |
C7—C8—H8A | 109.5 | C7'—C8'—H8'A | 109.5 |
C7—C8—H8B | 109.5 | C7'—C8'—H8'B | 109.5 |
C7—C8—H8C | 109.5 | C7'—C8'—H8'C | 109.5 |
H8A—C8—H8B | 109.5 | H8'A—C8'—H8'B | 109.5 |
H8A—C8—H8C | 109.5 | H8'A—C8'—H8'C | 109.5 |
H8B—C8—H8C | 109.5 | H8'B—C8'—H8'C | 109.5 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1′iii | 0.95 | 2.49 | 3.421 (3) | 167 |
C8—H8B···O1′iv | 0.98 | 2.52 | 3.465 (3) | 161 |
C5′—H5′···O1v | 0.95 | 2.47 | 3.404 (3) | 167 |
C8′—H8′A···O1vi | 0.98 | 2.58 | 3.518 (3) | 161 |
C7—H7B···N1′ | 0.99 | 2.58 | 3.565 (4) | 172 |
Symmetry codes: (iii) x+1, y−1, z; (iv) −x, −y+1, −z+1; (v) x+1, y, z; (vi) −x, −y+1, −z. |
Acknowledgements
We are grateful for support from the National Science Foundation (EPSCOR), the Wichita State University Office of Research, and the Department of Energy.
References
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ciana, L. D., Dressick, W. J. & Von Zelewsky, A. (1990). J. Heterocycl. Chem. 27, 163–165. CrossRef Web of Science Google Scholar
Cruz, A. J., Kirgan, R., Siam, K., Heiland, P. & Rillema, D. P. (2010). Inorg. Chim. Acta, 363, 2496–2505. Web of Science CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oki, A. R. & Morgan, R. J. (1995). Synth. Commun. 25, 4093–4097. CrossRef CAS Web of Science Google Scholar
Rillema, D. P., Stoyanov, S., Cruz, A., Nguyen, H., Moore, C., Huang, W., Siam, K., Jehan, A. & KomReddy, V. (2015). Dalton Trans. 44, 17075–17090. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Villegas, J. M., Stoyanov, S. R., Reibenspies, J. H. & Rillema, D. P. (2005). Organometallics, 24, 395–404. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.