organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­ethyl 2,2′-bi­pyridine-4,4′-di­carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Wichita State University, Wichita, KS 67260, USA, and bCrystallographic laboratory, University of California, San Diego, LaJolla, CA 92093, USA
*Correspondence e-mail: paul.rillema@wichita.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 September 2016; accepted 3 October 2016; online 4 October 2016)

The title bi­pyridine derivative, C16H16N2O4, crystallized with two half mol­ecules in the asymmetric unit. The whole mol­ecules (A and B) are generated by inversion symmetry with the mid-points of the bridging C—C bonds of the bi­pyridine units being located on crystallographic inversion centers. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming sheets parallel to (120). The sheets are linked by C—H⋯N hydrogen bonds, forming a three-dimensional framework.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Dimmine ligands, such as the title compound, have been used to coordinate to transition metals, viz. Ru2+, Pt2+, and Re1+, for use in solar energy conversion studies due to their excellent electronic properties (Cruz et al., 2010[Cruz, A. J., Kirgan, R., Siam, K., Heiland, P. & Rillema, D. P. (2010). Inorg. Chim. Acta, 363, 2496-2505.]; Rillema et al., 2015[Rillema, D. P., Stoyanov, S., Cruz, A., Nguyen, H., Moore, C., Huang, W., Siam, K., Jehan, A. & KomReddy, V. (2015). Dalton Trans. 44, 17075-17090.]; Villegas et al., 2005[Villegas, J. M., Stoyanov, S. R., Reibenspies, J. H. & Rillema, D. P. (2005). Organometallics, 24, 395-404.]). Upon photoexcitation, electrons are channeled from the metal center to the diimmine ligand on its pathway to the ground state.

The mol­ecular structure of the two independent mol­ecules of the title compound (A and B) are illustrated in Fig. 1[link]. In both mol­ecules, the two pyridine rings are arranged such that the pyridine N atoms are trans to one another. Mol­ecule A is more planar than mol­ecule B, with the ethyl carboxyl­ate group [C—C—O—C(=O)] being inclined to the pyridine ring by 2.11 (15)° in A, and 5.69 (15)° in B.

[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, showing the atom labeling [the unlabeled atoms are related to the labeled atoms by the symmetry code (−x + 1, −y, −z) for mol­ecule A, and (−x + 1, −y + 1, −z + 1) for mol­ecule B]. Displacement ellipsoids are drawn at the 50% probability level.

The bond lengths and bond angles of the title free ligand are basically the same as those observed for the coordinated ligand in Pt(bph)(4,4′-di­eth­oxy­carbonyl-2,2′-bi­pyridine) (Rillema et al., 2015[Rillema, D. P., Stoyanov, S., Cruz, A., Nguyen, H., Moore, C., Huang, W., Siam, K., Jehan, A. & KomReddy, V. (2015). Dalton Trans. 44, 17075-17090.]). Upon coordination to transition metals, the two pyridine rings have the pyridine N atoms cis to one another, resulting in ππ delocalization over the whole ligand.

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds (Table 1[link]), forming sheets parallel to (120), as illustrated in Fig. 2[link]. The sheets are linked by C—H⋯N hydrogen bonds, forming a three-dimensional framework (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1′i 0.95 2.49 3.421 (3) 167
C8—H8B⋯O1′ii 0.98 2.52 3.465 (3) 161
C5′—H5′⋯O1iii 0.95 2.47 3.404 (3) 167
C8′—H8′A⋯O1iv 0.98 2.58 3.518 (3) 161
C7—H7B⋯N1′ 0.99 2.58 3.565 (4) 172
Symmetry codes: (i) x+1, y-1, z; (ii) -x, -y+1, -z+1; (iii) x+1, y, z; (iv) -x, -y+1, -z.
[Figure 2]
Figure 2
A view normal to plane (120) of the crystal packing of the title compound (mol­ecule A is blue and mol­ecule B is red). The hydrogen bonds are shown as dashed lines (see Table 1[link]), and, for clarity, only the H atoms involved in hydrogen bonding have been included.
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound (mol­ecule A is blue and mol­ecule B is red). The hydrogen bonds are shown as dashed lines (see Table 1[link]), and, for clarity, only the H atoms involved in hydrogen bonding have been included.

Synthesis and crystallization

The title compound was prepared in two steps according to previously published procedures. In step one, 4,4′-dimethyl-2,2′-bi­pyridine, purchased commercially, was oxidized forming 4,4′-dicarb­oxy-2,2′-bi­pyridine (Oki et al., 1995[Oki, A. R. & Morgan, R. J. (1995). Synth. Commun. 25, 4093-4097.]). In step two, the dicarb­oxy compound was converted to the di­eth­oxy­carbonyl derivative (Ciana et al., 1990[Ciana, L. D., Dressick, W. J. & Von Zelewsky, A. (1990). J. Heterocycl. Chem. 27, 163-165.]). The vapor diffusion technique was used to obtain single crystals of the title compound. It was dissolved in di­chloro­methane and placed in a center vial, while the outer vial contained methanol.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H16N2O4
Mr 300.31
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 3.9059 (8), 13.493 (3), 13.767 (3)
α, β, γ (°) 92.212 (7), 93.163 (7), 93.016 (7)
V3) 722.8 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.13 × 0.08 × 0.06
 
Data collection
Diffractometer Bruker APEXII Ultra
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.066, 0.092
No. of measured, independent and observed [I > 2σ(I)] reflections 10150, 2664, 1699
Rint 0.054
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.141, 1.02
No. of reflections 2664
No. of parameters 201
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHEXLS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHEXLS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Diethyl 2,2'-bipyridine-4,4'-dicarboxylate top
Crystal data top
C16H16N2O4Z = 2
Mr = 300.31F(000) = 316
Triclinic, P1Dx = 1.380 Mg m3
a = 3.9059 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.493 (3) ÅCell parameters from 2248 reflections
c = 13.767 (3) Åθ = 3.0–25.0°
α = 92.212 (7)°µ = 0.10 mm1
β = 93.163 (7)°T = 100 K
γ = 93.016 (7)°Plate, colorless
V = 722.8 (3) Å30.13 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII Ultra
diffractometer
2664 independent reflections
Radiation source: Micro Focus Rotating Anode, Bruker TXS1699 reflections with I > 2σ(I)
Double Bounce Multilayer Mirrors monochromatorRint = 0.054
Detector resolution: 7.9 pixels mm-1θmax = 25.4°, θmin = 1.5°
ω and φ scansh = 44
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1616
Tmin = 0.066, Tmax = 0.092l = 1616
10150 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.352P]
where P = (Fo2 + 2Fc2)/3
2664 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6443 (6)0.08269 (16)0.09213 (16)0.0229 (6)
O10.1227 (5)0.21648 (14)0.24091 (14)0.0322 (5)
O20.2666 (5)0.12418 (13)0.36775 (13)0.0267 (5)
C10.5052 (6)0.00246 (18)0.05424 (19)0.0213 (6)
C20.3798 (7)0.0728 (2)0.1117 (2)0.0227 (6)
H20.28780.12910.08270.027*
C30.3909 (7)0.06454 (19)0.2116 (2)0.0230 (7)
C40.5353 (7)0.0181 (2)0.2512 (2)0.0250 (7)
H40.54960.02550.31960.030*
C50.6573 (7)0.0889 (2)0.1889 (2)0.0243 (7)
H50.75580.14520.21630.029*
C60.2460 (7)0.1439 (2)0.2732 (2)0.0238 (7)
C70.1308 (7)0.1979 (2)0.43362 (19)0.0268 (7)
H7A0.11570.20570.41670.032*
H7B0.25620.26310.42900.032*
C80.1788 (8)0.1608 (2)0.5350 (2)0.0322 (8)
H8A0.05350.09630.53850.048*
H8B0.09040.20840.58170.048*
H8C0.42370.15350.55080.048*
N1'0.6531 (6)0.41872 (16)0.40638 (16)0.0225 (6)
O1'0.1233 (5)0.71739 (14)0.26347 (13)0.0307 (5)
O2'0.2484 (5)0.62205 (13)0.13410 (13)0.0257 (5)
C1'0.5100 (6)0.49830 (18)0.44587 (19)0.0210 (6)
C2'0.3829 (7)0.57364 (19)0.39046 (19)0.0214 (6)
H2'0.28890.62960.42090.026*
C3'0.3960 (7)0.56565 (19)0.2899 (2)0.0213 (6)
C4'0.5453 (7)0.4843 (2)0.2487 (2)0.0231 (7)
H4'0.56230.47740.18030.028*
C5'0.6691 (7)0.4135 (2)0.3096 (2)0.0241 (7)
H5'0.77130.35800.28100.029*
C6'0.2446 (7)0.6440 (2)0.2295 (2)0.0219 (6)
C7'0.0956 (8)0.6935 (2)0.0684 (2)0.0325 (7)
H7'A0.21670.75970.07890.039*
H7'B0.14970.69990.08080.039*
C8'0.1316 (9)0.6543 (2)0.0342 (2)0.0401 (8)
H8'A0.03620.70070.08020.060*
H8'B0.00700.58940.04410.060*
H8'C0.37500.64730.04520.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0252 (13)0.0172 (12)0.0269 (14)0.0071 (10)0.0006 (10)0.0006 (10)
O10.0430 (13)0.0242 (11)0.0301 (12)0.0145 (10)0.0005 (10)0.0027 (9)
O20.0306 (11)0.0268 (11)0.0235 (11)0.0094 (9)0.0026 (8)0.0026 (8)
C10.0165 (14)0.0190 (15)0.0278 (15)0.0007 (12)0.0008 (12)0.0017 (12)
C20.0215 (15)0.0172 (14)0.0293 (17)0.0037 (12)0.0014 (12)0.0005 (12)
C30.0185 (15)0.0202 (15)0.0301 (17)0.0034 (12)0.0001 (12)0.0015 (12)
C40.0248 (16)0.0262 (16)0.0246 (16)0.0055 (13)0.0021 (13)0.0008 (13)
C50.0242 (15)0.0193 (15)0.0305 (17)0.0093 (12)0.0016 (12)0.0038 (12)
C60.0201 (15)0.0250 (16)0.0258 (17)0.0035 (13)0.0015 (12)0.0023 (13)
C70.0290 (16)0.0262 (15)0.0255 (16)0.0089 (13)0.0022 (12)0.0072 (12)
C80.0318 (18)0.0359 (18)0.0294 (18)0.0072 (14)0.0050 (13)0.0032 (14)
N1'0.0224 (13)0.0187 (12)0.0264 (14)0.0045 (10)0.0011 (10)0.0022 (10)
O1'0.0428 (13)0.0249 (11)0.0259 (12)0.0169 (10)0.0033 (9)0.0007 (9)
O2'0.0327 (11)0.0242 (11)0.0206 (11)0.0105 (9)0.0005 (8)0.0023 (8)
C1'0.0195 (15)0.0157 (15)0.0278 (15)0.0015 (12)0.0021 (12)0.0021 (12)
C2'0.0220 (15)0.0157 (14)0.0269 (17)0.0057 (12)0.0047 (12)0.0030 (12)
C3'0.0176 (14)0.0177 (14)0.0282 (17)0.0015 (12)0.0024 (12)0.0046 (12)
C4'0.0235 (15)0.0240 (15)0.0221 (15)0.0053 (13)0.0010 (12)0.0006 (13)
C5'0.0228 (15)0.0184 (14)0.0312 (18)0.0066 (12)0.0033 (12)0.0067 (12)
C6'0.0194 (15)0.0208 (15)0.0252 (17)0.0008 (12)0.0003 (12)0.0004 (12)
C7'0.0352 (18)0.0308 (17)0.0319 (18)0.0045 (14)0.0061 (14)0.0019 (14)
C8'0.044 (2)0.047 (2)0.0287 (19)0.0099 (16)0.0006 (15)0.0062 (15)
Geometric parameters (Å, º) top
N1—C11.347 (3)N1'—C1'1.346 (3)
N1—C51.336 (3)N1'—C5'1.336 (3)
O1—C61.203 (3)O1'—C6'1.209 (3)
O2—C61.338 (3)O2'—C6'1.336 (3)
O2—C71.460 (3)O2'—C7'1.474 (3)
C1—C1i1.496 (5)C1'—C1'ii1.496 (5)
C1—C21.389 (4)C1'—C2'1.390 (4)
C2—H20.9500C2'—H2'0.9500
C2—C31.382 (4)C2'—C3'1.388 (4)
C3—C41.392 (4)C3'—C4'1.386 (4)
C3—C61.494 (4)C3'—C6'1.496 (4)
C4—H40.9500C4'—H4'0.9500
C4—C51.381 (4)C4'—C5'1.384 (4)
C5—H50.9500C5'—H5'0.9500
C7—H7A0.9900C7'—H7'A0.9900
C7—H7B0.9900C7'—H7'B0.9900
C7—C81.507 (4)C7'—C8'1.505 (4)
C8—H8A0.9800C8'—H8'A0.9800
C8—H8B0.9800C8'—H8'B0.9800
C8—H8C0.9800C8'—H8'C0.9800
C5—N1—C1117.6 (2)C5'—N1'—C1'117.3 (2)
C6—O2—C7115.9 (2)C6'—O2'—C7'116.5 (2)
N1—C1—C1i116.4 (3)N1'—C1'—C1'ii116.4 (3)
N1—C1—C2122.5 (2)N1'—C1'—C2'122.8 (2)
C2—C1—C1i121.1 (3)C2'—C1'—C1'ii120.8 (3)
C1—C2—H2120.4C1'—C2'—H2'120.6
C3—C2—C1119.1 (2)C3'—C2'—C1'118.8 (2)
C3—C2—H2120.4C3'—C2'—H2'120.6
C2—C3—C4118.6 (2)C2'—C3'—C6'119.1 (2)
C2—C3—C6119.1 (2)C4'—C3'—C2'118.7 (2)
C4—C3—C6122.3 (3)C4'—C3'—C6'122.1 (2)
C3—C4—H4120.7C3'—C4'—H4'120.8
C5—C4—C3118.5 (3)C5'—C4'—C3'118.5 (3)
C5—C4—H4120.7C5'—C4'—H4'120.8
N1—C5—C4123.5 (2)N1'—C5'—C4'123.8 (3)
N1—C5—H5118.2N1'—C5'—H5'118.1
C4—C5—H5118.2C4'—C5'—H5'118.1
O1—C6—O2124.3 (3)O1'—C6'—O2'123.9 (2)
O1—C6—C3123.6 (3)O1'—C6'—C3'123.6 (2)
O2—C6—C3112.1 (2)O2'—C6'—C3'112.4 (2)
O2—C7—H7A110.3O2'—C7'—H7'A110.3
O2—C7—H7B110.3O2'—C7'—H7'B110.3
O2—C7—C8106.9 (2)O2'—C7'—C8'107.2 (2)
H7A—C7—H7B108.6H7'A—C7'—H7'B108.5
C8—C7—H7A110.3C8'—C7'—H7'A110.3
C8—C7—H7B110.3C8'—C7'—H7'B110.3
C7—C8—H8A109.5C7'—C8'—H8'A109.5
C7—C8—H8B109.5C7'—C8'—H8'B109.5
C7—C8—H8C109.5C7'—C8'—H8'C109.5
H8A—C8—H8B109.5H8'A—C8'—H8'B109.5
H8A—C8—H8C109.5H8'A—C8'—H8'C109.5
H8B—C8—H8C109.5H8'B—C8'—H8'C109.5
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1iii0.952.493.421 (3)167
C8—H8B···O1iv0.982.523.465 (3)161
C5—H5···O1v0.952.473.404 (3)167
C8—H8A···O1vi0.982.583.518 (3)161
C7—H7B···N10.992.583.565 (4)172
Symmetry codes: (iii) x+1, y1, z; (iv) x, y+1, z+1; (v) x+1, y, z; (vi) x, y+1, z.
 

Acknowledgements

We are grateful for support from the National Science Foundation (EPSCOR), the Wichita State University Office of Research, and the Department of Energy.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCiana, L. D., Dressick, W. J. & Von Zelewsky, A. (1990). J. Heterocycl. Chem. 27, 163–165.  CrossRef Web of Science Google Scholar
First citationCruz, A. J., Kirgan, R., Siam, K., Heiland, P. & Rillema, D. P. (2010). Inorg. Chim. Acta, 363, 2496–2505.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOki, A. R. & Morgan, R. J. (1995). Synth. Commun. 25, 4093–4097.  CrossRef CAS Web of Science Google Scholar
First citationRillema, D. P., Stoyanov, S., Cruz, A., Nguyen, H., Moore, C., Huang, W., Siam, K., Jehan, A. & KomReddy, V. (2015). Dalton Trans. 44, 17075–17090.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVillegas, J. M., Stoyanov, S. R., Reibenspies, J. H. & Rillema, D. P. (2005). Organometallics, 24, 395–404.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds