metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(μ-4-amino-N-oxidobenzamide)­bis­­[(4-amino-N-oxidobenzamide)­aqua­cobalt] dihydrate

CROSSMARK_Color_square_no_text.svg

aHubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, 438000, People's Republic of China
*Correspondence e-mail: 1379489633@qq.com

Edited by J. Simpson, University of Otago, New Zealand (Received 10 October 2016; accepted 14 October 2016; online 21 October 2016)

The structure of the title compound, [Co2(C7H7N2O2)4(H2O)2]·2H2O, consists of a centrosymmetric binuclear [Co2(4-Apha)4(H2O)2] complex mol­ecule (4-AphaH = 4-amino­phenyl­hydroxamic acid), and two solvent water mol­ecules. Each CoII cation is six coordinate, binding five oxygen atoms from three 4-Apha ligands and a water mol­ecule in a slightly distorted octa­hedral geometry. Two of the 4-Apha ligands bridge two neighbouring CoII ions to form the binuclear complex. A three-dimensional network structure is generated by O—H⋯O, N—H⋯O, and N—H⋯N hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The asymmetric unit of the title compound consists of a CoII cation bound to two bidentate Apha ligands and a water mol­ecule. The Co1—O4A and Co1A—O4 bonds, [symmetry code: (A) −x, −y, −z], generate the centrosymmetric binuclear [Co2(4-Apha)4(H2O)2] complex, Fig. 1[link]. The structure also has two solvent water mol­ecules. Two of the 4-Apha ligands bridge the adjacent CoII nuclei in a μ2 fashion while the two others are bidentate, each coordinating to a single CoII atom. A water mol­ecule also binds to the Co nucleus, completing the slightly distorted octa­hedral coordination geometry. The Co—O distances range from 2.0741 (15) to 2.1655 (15) Å, which agrees well with the values observed in related structures (Chen et al., 2014[Chen, Y. M., Gao, Q., Zhang, H. F., Gao, D. D., Li, Y. H., Liu, W. & Li, W. (2014). Polyhedron, 71, 91-98.], 2015[Chen, Y. M., Gao, Q., Chen, W. Q., Gao, D. D., Li, Y. H., Liu, W. & Li, W. (2015). Chem. Asian J. 10, 411-421.]). The Co1⋯Co1A distance is 3.1727 (5) Å with a Co1—O4—Co1A angle of 97.44 (6)°.

[Figure 1]
Figure 1
The structure of title complex with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (A) −x, −y, −z.]

In the crystal, N—H⋯O hydrogen bonds form between the NH2 groups of 4-Apha ligands as donors and the O atoms of coordinated or solvate water mol­ecules as acceptors, Table 1[link]. N—H⋯N hydrogen bonds form between the NH groups of the 4-Apha ligands and the NH2 groups of adjacent ligands. The coordinated and solvent water mol­ecules act as both hydrogen-bond donors and acceptors, Table 1[link], and this multitude of classical hydrogen bonds combines to generate a three-dimensional supra­molecular network structure, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2i 0.85 1.85 2.681 (2) 164
N1—H1B⋯O6ii 0.81 2.41 3.106 (3) 144
N1—H1A⋯O4iii 0.86 2.20 3.060 (3) 174
O5—H5B⋯O3i 0.85 2.05 2.817 (2) 150
N3—H3A⋯O6iv 0.87 2.20 3.047 (3) 163
N3—H3B⋯O5v 0.86 2.24 3.103 (2) 178
O6—H6A⋯O2 0.85 1.99 2.822 (3) 164
O6—H6A⋯N2 0.85 2.58 3.392 (3) 160
N4—H4⋯N3vi 0.86 2.28 3.063 (3) 152
Symmetry codes: (i) -x, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of title complex viewed along the b axis with hydrogen bonds drawn as dashed lines.

Synthesis and crystallization

A mixture of 4-AphaH (0.0150 g, 0.1 mmol), Co(CH3COO)2·4H2O (0.0249 g, 0.1 mmol) and H2O/ethanol (v/v = 1:1, 1 ml) was sealed in a 6 ml Pyrex tube. The tube was heated at 60°C for 3 d under autogenous pressure. Slow cooling of the resulting solution to room temperature gave brown prism-like crystals. The yield was 0.0128 g (64%, based on 4-AphaH).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Co2(C7H7N2O2)4(H2O)2]·2H2O
Mr 794.51
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.6382 (7), 7.6075 (5), 19.8693 (13)
β (°) 93.219 (1)
V3) 1605.49 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.11
Crystal size (mm) 0.28 × 0.25 × 0.23
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.746, 0.784
No. of measured, independent and observed [I > 2σ(I)] reflections 10770, 3984, 3123
Rint 0.033
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 0.95
No. of reflections 3984
No. of parameters 226
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.48
Computer programs: APEX2 and SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 and SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(µ-4-amino-N-oxidobenzamide)bis[(4-amino-N-oxidobenzamide)aquacobalt] dihydrate top
Crystal data top
[Co2(C7H7N2O2)4(H2O)2]·2H2OF(000) = 820
Mr = 794.51Dx = 1.643 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.6382 (7) ÅCell parameters from 2780 reflections
b = 7.6075 (5) Åθ = 2.9–27.8°
c = 19.8693 (13) ŵ = 1.11 mm1
β = 93.219 (1)°T = 296 K
V = 1605.49 (18) Å3Prism, brown
Z = 20.28 × 0.25 × 0.23 mm
Data collection top
Bruker APEXII CCD
diffractometer
3123 reflections with I > 2σ(I)
φ and ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
θmax = 28.4°, θmin = 2.1°
Tmin = 0.746, Tmax = 0.784h = 1314
10770 measured reflectionsk = 109
3984 independent reflectionsl = 2620
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0398P)2 + 1.2061P]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
3984 reflectionsΔρmax = 0.59 e Å3
226 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.02073 (3)0.19515 (4)0.02648 (2)0.01957 (9)
O10.03470 (15)0.1624 (2)0.13027 (7)0.0276 (3)
O30.02485 (14)0.26232 (19)0.07576 (7)0.0243 (3)
O20.17079 (15)0.3594 (2)0.05349 (7)0.0271 (3)
N20.17829 (18)0.3738 (3)0.12290 (9)0.0280 (4)
H20.22690.45110.14230.034*
C80.12639 (19)0.2018 (3)0.17786 (10)0.0203 (4)
O50.11627 (15)0.39954 (19)0.04215 (7)0.0263 (3)
H5A0.12340.46490.00740.039*
H5B0.08240.48150.06590.032*
C140.10440 (19)0.1713 (3)0.10601 (10)0.0194 (4)
C70.1105 (2)0.2684 (3)0.15950 (10)0.0218 (4)
C40.1405 (2)0.2830 (3)0.37565 (11)0.0301 (5)
C120.0396 (2)0.2982 (3)0.28674 (10)0.0267 (5)
H120.02470.35300.31250.032*
C110.1431 (2)0.2297 (3)0.31795 (10)0.0239 (4)
C10.12380 (19)0.2772 (3)0.23381 (10)0.0210 (4)
C130.0319 (2)0.2851 (3)0.21764 (10)0.0242 (4)
H130.03720.33250.19740.029*
N10.1472 (2)0.2922 (4)0.44496 (10)0.0537 (7)
H1A0.21430.34040.46310.064*
H1B0.09370.24160.46550.064*
C60.0353 (2)0.1913 (3)0.27101 (10)0.0268 (5)
H60.03020.13070.24840.032*
C50.0426 (2)0.1937 (3)0.34055 (11)0.0326 (5)
H50.01990.13400.36500.039*
N30.1540 (2)0.2500 (3)0.38711 (9)0.0324 (4)
H3A0.07720.24510.40510.039*
H3B0.21810.20730.40590.039*
C100.2395 (2)0.1511 (3)0.27810 (11)0.0272 (5)
H100.31000.10730.29810.033*
C90.2312 (2)0.1375 (3)0.20921 (11)0.0255 (4)
H90.29640.08490.18330.031*
C20.2233 (2)0.3625 (3)0.26928 (11)0.0280 (5)
H2A0.28470.41870.24560.034*
C30.2321 (2)0.3649 (3)0.33879 (11)0.0314 (5)
H30.29960.42150.36130.038*
O60.4080 (2)0.2162 (4)0.02767 (13)0.0874 (9)
H6A0.33810.24810.04250.105*
H6B0.41460.32560.01980.105*
N40.16524 (16)0.0421 (2)0.07437 (8)0.0211 (4)
H40.22730.00890.09230.025*
O40.12774 (13)0.01100 (19)0.01141 (6)0.0209 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02660 (16)0.01796 (14)0.01431 (13)0.00035 (11)0.00260 (10)0.00054 (10)
O10.0365 (9)0.0277 (8)0.0183 (7)0.0102 (7)0.0017 (6)0.0001 (6)
O30.0322 (8)0.0240 (7)0.0171 (7)0.0064 (6)0.0044 (6)0.0008 (6)
O20.0339 (9)0.0311 (8)0.0165 (7)0.0052 (7)0.0030 (6)0.0001 (6)
N20.0336 (10)0.0317 (10)0.0188 (9)0.0110 (8)0.0008 (7)0.0033 (7)
C80.0241 (10)0.0198 (10)0.0172 (9)0.0028 (8)0.0035 (7)0.0008 (8)
O50.0352 (9)0.0211 (7)0.0231 (8)0.0015 (6)0.0055 (6)0.0016 (6)
C140.0226 (10)0.0187 (10)0.0171 (9)0.0031 (8)0.0016 (7)0.0011 (7)
C70.0248 (10)0.0210 (10)0.0196 (10)0.0012 (8)0.0006 (8)0.0010 (8)
C40.0310 (12)0.0380 (13)0.0206 (10)0.0021 (10)0.0029 (9)0.0011 (9)
C120.0271 (11)0.0321 (12)0.0210 (10)0.0018 (9)0.0024 (8)0.0057 (9)
C110.0287 (11)0.0253 (11)0.0183 (10)0.0047 (9)0.0058 (8)0.0010 (8)
C10.0231 (10)0.0221 (11)0.0177 (9)0.0004 (8)0.0012 (7)0.0014 (8)
C130.0233 (11)0.0280 (11)0.0220 (10)0.0030 (9)0.0059 (8)0.0013 (8)
N10.0495 (14)0.093 (2)0.0175 (10)0.0225 (14)0.0037 (9)0.0022 (11)
C60.0274 (11)0.0310 (11)0.0214 (10)0.0051 (9)0.0030 (8)0.0029 (9)
C50.0322 (12)0.0444 (14)0.0212 (10)0.0109 (11)0.0009 (9)0.0019 (10)
N30.0341 (11)0.0459 (12)0.0177 (9)0.0006 (9)0.0065 (8)0.0020 (8)
C100.0262 (11)0.0305 (12)0.0258 (11)0.0030 (9)0.0087 (9)0.0005 (9)
C90.0261 (11)0.0276 (11)0.0230 (10)0.0050 (9)0.0025 (8)0.0030 (9)
C20.0258 (11)0.0341 (12)0.0241 (11)0.0061 (9)0.0018 (8)0.0017 (9)
C30.0264 (12)0.0399 (13)0.0270 (11)0.0069 (10)0.0061 (9)0.0062 (10)
O60.0394 (13)0.137 (3)0.0859 (18)0.0009 (15)0.0076 (12)0.0290 (18)
N40.0234 (9)0.0241 (9)0.0163 (8)0.0018 (7)0.0046 (6)0.0012 (7)
O40.0279 (8)0.0221 (7)0.0129 (6)0.0004 (6)0.0023 (5)0.0021 (5)
Geometric parameters (Å, º) top
Co1—O22.0741 (15)C11—N31.394 (3)
Co1—O12.0742 (14)C11—C101.395 (3)
Co1—O32.0975 (14)C1—C61.392 (3)
Co1—O42.1021 (14)C1—C21.398 (3)
Co1—O4i2.1198 (15)C13—H130.9300
Co1—O52.1655 (15)N1—H1A0.8628
O1—C71.259 (2)N1—H1B0.8150
O3—C141.270 (2)C6—C51.380 (3)
O2—N21.381 (2)C6—H60.9300
N2—C71.323 (3)C5—H50.9600
N2—H20.8600N3—H3A0.8745
C8—C91.396 (3)N3—H3B0.8598
C8—C131.396 (3)C10—C91.380 (3)
C8—C141.478 (3)C10—H100.9300
O5—H5A0.8500C9—H90.9300
O5—H5B0.8500C2—C31.379 (3)
C14—N41.317 (3)C2—H2A0.9300
C7—C11.477 (3)C3—H30.9300
C4—N11.377 (3)O6—H6A0.8499
C4—C51.397 (3)O6—H6B0.8501
C4—C31.398 (3)N4—O41.394 (2)
C12—C131.384 (3)N4—H40.8600
C12—C111.395 (3)O4—Co1i2.1199 (15)
C12—H120.9300
O2—Co1—O178.69 (6)N3—C11—C12120.6 (2)
O2—Co1—O392.65 (6)C10—C11—C12118.77 (19)
O1—Co1—O3171.07 (6)C6—C1—C2117.76 (18)
O2—Co1—O496.76 (6)C6—C1—C7118.68 (18)
O1—Co1—O4104.87 (6)C2—C1—C7123.52 (19)
O3—Co1—O478.10 (5)C12—C13—C8120.90 (19)
O2—Co1—O4i172.41 (5)C12—C13—H13119.5
O1—Co1—O4i94.15 (5)C8—C13—H13119.5
O3—Co1—O4i94.60 (6)C4—N1—H1A115.7
O4—Co1—O4i82.56 (6)C4—N1—H1B118.6
O2—Co1—O592.56 (6)H1A—N1—H1B125.2
O1—Co1—O587.39 (6)C5—C6—C1121.6 (2)
O3—Co1—O590.87 (5)C5—C6—H6119.2
O4—Co1—O5165.83 (5)C1—C6—H6119.2
O4i—Co1—O589.58 (6)C6—C5—C4120.3 (2)
C7—O1—Co1112.97 (13)C6—C5—H5120.0
C14—O3—Co1112.10 (12)C4—C5—H5119.7
N2—O2—Co1107.85 (11)C11—N3—H3A105.8
C7—N2—O2119.88 (17)C11—N3—H3B119.9
C7—N2—H2120.1H3A—N3—H3B123.5
O2—N2—H2120.1C9—C10—C11120.6 (2)
C9—C8—C13118.33 (18)C9—C10—H10119.7
C9—C8—C14123.36 (18)C11—C10—H10119.7
C13—C8—C14118.04 (18)C10—C9—C8120.9 (2)
Co1—O5—H5A109.5C10—C9—H9119.6
Co1—O5—H5B109.8C8—C9—H9119.6
H5A—O5—H5B92.2C3—C2—C1121.2 (2)
O3—C14—N4120.23 (18)C3—C2—H2A119.4
O3—C14—C8121.16 (18)C1—C2—H2A119.4
N4—C14—C8118.54 (18)C2—C3—C4120.6 (2)
O1—C7—N2119.28 (18)C2—C3—H3119.7
O1—C7—C1120.88 (18)C4—C3—H3119.7
N2—C7—C1119.83 (18)H6A—O6—H6B82.3
N1—C4—C5121.3 (2)C14—N4—O4119.12 (17)
N1—C4—C3120.2 (2)C14—N4—H4120.4
C5—C4—C3118.5 (2)O4—N4—H4120.4
C13—C12—C11120.4 (2)N4—O4—Co1107.06 (11)
C13—C12—H12119.8N4—O4—Co1i108.24 (10)
C11—C12—H12119.8Co1—O4—Co1i97.44 (6)
N3—C11—C10120.5 (2)
Co1—O2—N2—C710.8 (2)C2—C1—C6—C51.9 (3)
Co1—O3—C14—N45.4 (2)C7—C1—C6—C5179.7 (2)
Co1—O3—C14—C8177.58 (14)C1—C6—C5—C40.3 (4)
C9—C8—C14—O3164.1 (2)N1—C4—C5—C6177.8 (2)
C13—C8—C14—O321.9 (3)C3—C4—C5—C61.7 (4)
C9—C8—C14—N418.8 (3)N3—C11—C10—C9177.3 (2)
C13—C8—C14—N4155.16 (19)C12—C11—C10—C91.5 (3)
Co1—O1—C7—N25.6 (3)C11—C10—C9—C80.1 (3)
Co1—O1—C7—C1173.90 (15)C13—C8—C9—C102.0 (3)
O2—N2—C7—O13.8 (3)C14—C8—C9—C10171.9 (2)
O2—N2—C7—C1176.66 (18)C6—C1—C2—C31.4 (3)
C13—C12—C11—N3177.0 (2)C7—C1—C2—C3179.1 (2)
C13—C12—C11—C101.2 (3)C1—C2—C3—C40.6 (4)
O1—C7—C1—C611.9 (3)N1—C4—C3—C2177.3 (2)
N2—C7—C1—C6167.6 (2)C5—C4—C3—C22.2 (4)
O1—C7—C1—C2165.8 (2)O3—C14—N4—O49.8 (3)
N2—C7—C1—C214.7 (3)C8—C14—N4—O4167.29 (17)
C11—C12—C13—C80.7 (3)C14—N4—O4—Co118.85 (19)
C9—C8—C13—C122.3 (3)C14—N4—O4—Co1i85.25 (17)
C14—C8—C13—C12172.0 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2ii0.851.852.681 (2)164
N1—H1B···O6iii0.812.413.106 (3)144
N1—H1A···O4iv0.862.203.060 (3)174
O5—H5B···O3ii0.852.052.817 (2)150
N3—H3A···O6v0.872.203.047 (3)163
N3—H3B···O5vi0.862.243.103 (2)178
O6—H6A···O20.851.992.822 (3)164
O6—H6A···N20.852.583.392 (3)160
N4—H4···N3vii0.862.283.063 (3)152
Symmetry codes: (ii) x, y+1, z; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z1/2; (vi) x+1/2, y+1/2, z1/2; (vii) x+1/2, y1/2, z1/2.
 

Acknowledgements

This research was supported by Doctoral Fund Project of Huanggang Normal University (grant No. 2015001803).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. M., Gao, Q., Chen, W. Q., Gao, D. D., Li, Y. H., Liu, W. & Li, W. (2015). Chem. Asian J. 10, 411–421.  CSD CrossRef CAS PubMed Google Scholar
First citationChen, Y. M., Gao, Q., Zhang, H. F., Gao, D. D., Li, Y. H., Liu, W. & Li, W. (2014). Polyhedron, 71, 91–98.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds