organic compounds
N,N′-Bis(pyrazin-2-ylmethyl)pyrazine-2,3-dicarboxamide
aChongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, People's Republic of China
*Correspondence e-mail: ouwzdong@qq.com
The title compound, C16H14N8O2, was prepared by a condensation reaction between the dimethyl ester of pyrazine-2,3-dicarboxylic acid and an excess of 2-(aminomethyl)pyrazine. The molecule is approximately V-shaped with the central pyrazine ring joined through amide linkages to two pyrazin-2-ylmethyl substituents. In the crystal, molecules are linked by N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds, forming a three-dimensional framework.
Keywords: crystal structure; pyrazine-based ligand; amide ligand; hydrogen bonds.
CCDC reference: 1504885
Structure description
Pyrazine-based amide ligands have played a very important role in coordination chemistry (Cati et al., 2004; Cati & Stoeckli-Evans, 2004a,b; Klingele et al., 2007). The of a symmetrical diamide ligand (Cati & Stoeckli-Evans, 2004c) and its bi- and tetranuclear copper(II) complexes have also been reported (Cati & Stoeckli-Evans, 2004d; Hausmann et al., 2003; Hausmann & Brooker 2004). In order to expand the research scope of this pyrazine-2,3-bisamide ligand system, we have prepared the title compound to investigate its potential use as a ligand in transition metal chemistry.
There are three pyrazine rings in the title compound (Fig. 1). The outer pair are linked to the central pyrazine ring by two CH2–NH–C(O)–amide units, forming a V-shaped structure. The two outer pyrazine rings are inclined to the central ring by 48.98 (8) and 47.87 (8)°. In the crystal, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds generate a three-dimensional framework (Table 1 Fig. 2). The coordination modes of the ligand system could be more flexible than those of previously reported pyrazine-based ligands due to the N atoms of the outer pyrazine rings. These could be used in a bridging sense with the potential to construct metal-organic frameworks.
Synthesis and crystallization
All reagents and solvents for the synthesis were purchased from commercial sources and used as received without further purification. The title compound was prepared by the condensation reaction of the dimethyl ester pyrazine-2,3-dicarboxylate (3.92g, 20mmol) with 2-aminomethylpyrazine (2.18g, 20mmol) under reflux in 15mL of methanol for 12h. Solvent was removed by rotary evaporation to give a light-yellow solid. Recrystallization from CH3OH solution gave colorless crystals suitable for X-ray analysis.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1504885
https://doi.org/10.1107/S2414314616015881/sj4064sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616015881/sj4064Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616015881/sj4064Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C16H14N8O2 | Z = 2 |
Mr = 350.35 | F(000) = 364 |
Triclinic, P1 | Dx = 1.401 Mg m−3 |
a = 9.1166 (18) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.022 (2) Å | Cell parameters from 2164 reflections |
c = 10.781 (2) Å | θ = 2.3–26.7° |
α = 116.951 (2)° | µ = 0.10 mm−1 |
β = 97.130 (2)° | T = 296 K |
γ = 102.195 (2)° | Block, colourless |
V = 830.5 (3) Å3 | 0.22 × 0.20 × 0.20 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 2595 reflections with I > 2σ(I) |
Radiation source: fine focus sealed tube | Rint = 0.016 |
Graphite monochromator | θmax = 27.7°, θmin = 2.2° |
φ and ω scans | h = −11→11 |
3527 measured reflections | k = −13→11 |
3527 independent reflections | l = −13→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.132 | w = 1/[σ2(Fo2) + (0.0759P)2 + 0.0242P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
3527 reflections | Δρmax = 0.15 e Å−3 |
235 parameters | Δρmin = −0.17 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.44574 (13) | 0.72355 (16) | 0.68709 (12) | 0.0573 (4) | |
O2 | 0.72074 (13) | 1.03109 (13) | 0.82972 (12) | 0.0489 (3) | |
N1 | 0.35307 (13) | 0.81613 (15) | 0.88449 (13) | 0.0423 (3) | |
H1 | 0.3740 | 0.8582 | 0.9766 | 0.051* | |
N2 | −0.04468 (13) | 0.59908 (14) | 0.66043 (13) | 0.0385 (3) | |
N3 | 0.0331 (2) | 0.3695 (2) | 0.7075 (2) | 0.0799 (6) | |
N4 | 0.59054 (16) | 0.72344 (19) | 0.99377 (15) | 0.0525 (4) | |
N5 | 0.88003 (14) | 0.81968 (16) | 0.94792 (13) | 0.0432 (3) | |
N6 | 0.84472 (14) | 0.86414 (16) | 0.69834 (13) | 0.0398 (3) | |
H6 | 0.8840 | 0.7905 | 0.6898 | 0.048* | |
N7 | 0.68896 (18) | 0.96134 (17) | 0.43602 (15) | 0.0522 (4) | |
N8 | 0.48052 (19) | 0.6643 (2) | 0.32238 (17) | 0.0695 (5) | |
C1 | 0.46175 (16) | 0.77287 (18) | 0.81589 (15) | 0.0379 (4) | |
C2 | 0.20077 (16) | 0.79296 (18) | 0.80565 (17) | 0.0424 (4) | |
H2A | 0.2119 | 0.8171 | 0.7291 | 0.051* | |
H2B | 0.1541 | 0.8659 | 0.8699 | 0.051* | |
C3 | 0.09378 (16) | 0.62856 (17) | 0.74138 (15) | 0.0360 (3) | |
C4 | −0.14353 (18) | 0.45555 (19) | 0.60466 (18) | 0.0490 (4) | |
H4 | −0.2414 | 0.4312 | 0.5482 | 0.059* | |
C5 | −0.1042 (2) | 0.3430 (2) | 0.6286 (2) | 0.0665 (6) | |
H5 | −0.1766 | 0.2443 | 0.5879 | 0.080* | |
C6 | 0.1310 (2) | 0.5138 (2) | 0.7640 (2) | 0.0610 (5) | |
H6A | 0.2285 | 0.5379 | 0.8211 | 0.073* | |
C7 | 0.60761 (16) | 0.78146 (17) | 0.90534 (15) | 0.0363 (3) | |
C8 | 0.7197 (2) | 0.7138 (2) | 1.0583 (2) | 0.0603 (5) | |
H8 | 0.7136 | 0.6766 | 1.1230 | 0.072* | |
C9 | 0.8614 (2) | 0.7568 (2) | 1.03266 (18) | 0.0517 (4) | |
H9 | 0.9465 | 0.7416 | 1.0757 | 0.062* | |
C10 | 0.75270 (16) | 0.83414 (17) | 0.88594 (14) | 0.0334 (3) | |
C11 | 0.77139 (16) | 0.91900 (18) | 0.80107 (15) | 0.0358 (3) | |
C12 | 0.86012 (18) | 0.9254 (2) | 0.60010 (17) | 0.0454 (4) | |
H12A | 0.9436 | 0.8978 | 0.5560 | 0.054* | |
H12B | 0.8884 | 1.0391 | 0.6544 | 0.054* | |
C13 | 0.71396 (17) | 0.86430 (18) | 0.48330 (15) | 0.0397 (4) | |
C14 | 0.5594 (2) | 0.9103 (2) | 0.33497 (19) | 0.0607 (5) | |
H14 | 0.5376 | 0.9763 | 0.3013 | 0.073* | |
C15 | 0.4576 (2) | 0.7646 (3) | 0.2793 (2) | 0.0645 (6) | |
H15 | 0.3686 | 0.7342 | 0.2084 | 0.077* | |
C16 | 0.6093 (2) | 0.7170 (2) | 0.42593 (19) | 0.0561 (5) | |
H16 | 0.6294 | 0.6515 | 0.4609 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0428 (7) | 0.0868 (9) | 0.0372 (6) | 0.0231 (6) | 0.0054 (5) | 0.0262 (6) |
O2 | 0.0534 (7) | 0.0522 (7) | 0.0530 (7) | 0.0304 (6) | 0.0143 (5) | 0.0292 (6) |
N1 | 0.0275 (6) | 0.0489 (8) | 0.0373 (7) | 0.0097 (6) | 0.0023 (5) | 0.0130 (6) |
N2 | 0.0311 (6) | 0.0396 (7) | 0.0400 (7) | 0.0083 (6) | 0.0054 (5) | 0.0178 (6) |
N3 | 0.0610 (11) | 0.0556 (10) | 0.1300 (16) | 0.0145 (9) | 0.0086 (11) | 0.0567 (11) |
N4 | 0.0498 (8) | 0.0739 (10) | 0.0550 (9) | 0.0270 (7) | 0.0203 (7) | 0.0436 (8) |
N5 | 0.0369 (7) | 0.0564 (8) | 0.0423 (7) | 0.0211 (6) | 0.0057 (6) | 0.0273 (7) |
N6 | 0.0383 (7) | 0.0510 (8) | 0.0449 (7) | 0.0226 (6) | 0.0131 (6) | 0.0311 (6) |
N7 | 0.0629 (9) | 0.0526 (9) | 0.0490 (8) | 0.0239 (7) | 0.0090 (7) | 0.0301 (7) |
N8 | 0.0603 (10) | 0.0770 (12) | 0.0580 (10) | −0.0004 (9) | 0.0033 (8) | 0.0346 (9) |
C1 | 0.0301 (8) | 0.0415 (8) | 0.0363 (8) | 0.0077 (6) | 0.0034 (6) | 0.0170 (7) |
C2 | 0.0281 (8) | 0.0388 (8) | 0.0516 (9) | 0.0095 (6) | 0.0037 (6) | 0.0171 (7) |
C3 | 0.0297 (7) | 0.0378 (8) | 0.0404 (8) | 0.0123 (6) | 0.0079 (6) | 0.0186 (7) |
C4 | 0.0351 (9) | 0.0474 (10) | 0.0492 (9) | 0.0037 (7) | 0.0023 (7) | 0.0173 (8) |
C5 | 0.0553 (12) | 0.0404 (10) | 0.0930 (15) | 0.0037 (9) | 0.0122 (11) | 0.0304 (10) |
C6 | 0.0423 (10) | 0.0547 (11) | 0.0892 (14) | 0.0126 (8) | 0.0000 (9) | 0.0432 (11) |
C7 | 0.0344 (8) | 0.0415 (8) | 0.0331 (7) | 0.0147 (6) | 0.0068 (6) | 0.0176 (6) |
C8 | 0.0671 (12) | 0.0868 (14) | 0.0607 (11) | 0.0385 (11) | 0.0240 (9) | 0.0551 (11) |
C9 | 0.0493 (10) | 0.0729 (12) | 0.0515 (10) | 0.0335 (9) | 0.0106 (8) | 0.0400 (9) |
C10 | 0.0306 (7) | 0.0388 (8) | 0.0303 (7) | 0.0151 (6) | 0.0042 (5) | 0.0156 (6) |
C11 | 0.0275 (7) | 0.0416 (8) | 0.0381 (8) | 0.0122 (6) | 0.0018 (6) | 0.0203 (7) |
C12 | 0.0424 (9) | 0.0545 (10) | 0.0485 (9) | 0.0144 (8) | 0.0123 (7) | 0.0329 (8) |
C13 | 0.0430 (9) | 0.0454 (9) | 0.0382 (8) | 0.0173 (7) | 0.0146 (7) | 0.0241 (7) |
C14 | 0.0647 (12) | 0.0776 (14) | 0.0540 (11) | 0.0323 (11) | 0.0099 (9) | 0.0407 (10) |
C15 | 0.0495 (11) | 0.0973 (17) | 0.0501 (11) | 0.0189 (11) | 0.0059 (8) | 0.0422 (11) |
C16 | 0.0582 (11) | 0.0573 (11) | 0.0551 (10) | 0.0100 (9) | 0.0067 (9) | 0.0348 (9) |
O1—C1 | 1.2210 (17) | C2—C3 | 1.505 (2) |
O2—C11 | 1.2291 (18) | C2—H2A | 0.9700 |
N1—C1 | 1.3376 (19) | C2—H2B | 0.9700 |
N1—C2 | 1.4479 (18) | C3—C6 | 1.377 (2) |
N1—H1 | 0.8599 | C4—C5 | 1.372 (3) |
N2—C4 | 1.3328 (19) | C4—H4 | 0.9300 |
N2—C3 | 1.3333 (18) | C5—H5 | 0.9300 |
N3—C5 | 1.323 (3) | C6—H6A | 0.9300 |
N3—C6 | 1.335 (2) | C7—C10 | 1.395 (2) |
N4—C7 | 1.3312 (19) | C8—C9 | 1.375 (3) |
N4—C8 | 1.336 (2) | C8—H8 | 0.9300 |
N5—C9 | 1.3327 (19) | C9—H9 | 0.9300 |
N5—C10 | 1.3347 (18) | C10—C11 | 1.507 (2) |
N6—C11 | 1.3278 (19) | C12—C13 | 1.509 (2) |
N6—C12 | 1.4523 (18) | C12—H12A | 0.9700 |
N6—H6 | 0.8601 | C12—H12B | 0.9700 |
N7—C14 | 1.328 (2) | C13—C16 | 1.379 (2) |
N7—C13 | 1.3311 (19) | C14—C15 | 1.359 (3) |
N8—C15 | 1.326 (3) | C14—H14 | 0.9300 |
N8—C16 | 1.335 (2) | C15—H15 | 0.9300 |
C1—C7 | 1.5046 (19) | C16—H16 | 0.9300 |
C1—N1—C2 | 120.84 (13) | N4—C7—C10 | 121.72 (14) |
C1—N1—H1 | 119.6 | N4—C7—C1 | 116.92 (13) |
C2—N1—H1 | 119.6 | C10—C7—C1 | 121.09 (13) |
C4—N2—C3 | 116.98 (14) | N4—C8—C9 | 122.50 (15) |
C5—N3—C6 | 115.74 (17) | N4—C8—H8 | 118.8 |
C7—N4—C8 | 115.88 (14) | C9—C8—H8 | 118.7 |
C9—N5—C10 | 116.27 (13) | N5—C9—C8 | 121.79 (15) |
C11—N6—C12 | 121.60 (13) | N5—C9—H9 | 119.1 |
C11—N6—H6 | 119.2 | C8—C9—H9 | 119.1 |
C12—N6—H6 | 119.2 | N5—C10—C7 | 121.65 (13) |
C14—N7—C13 | 116.96 (15) | N5—C10—C11 | 117.86 (12) |
C15—N8—C16 | 115.45 (17) | C7—C10—C11 | 120.38 (12) |
O1—C1—N1 | 123.67 (14) | O2—C11—N6 | 124.70 (14) |
O1—C1—C7 | 119.96 (14) | O2—C11—C10 | 119.93 (13) |
N1—C1—C7 | 116.32 (13) | N6—C11—C10 | 115.38 (13) |
N1—C2—C3 | 113.38 (13) | N6—C12—C13 | 113.24 (12) |
N1—C2—H2A | 108.9 | N6—C12—H12A | 108.9 |
C3—C2—H2A | 108.9 | C13—C12—H12A | 108.9 |
N1—C2—H2B | 108.9 | N6—C12—H12B | 108.9 |
C3—C2—H2B | 108.9 | C13—C12—H12B | 108.9 |
H2A—C2—H2B | 107.7 | H12A—C12—H12B | 107.7 |
N2—C3—C6 | 120.59 (14) | N7—C13—C16 | 120.23 (15) |
N2—C3—C2 | 115.50 (13) | N7—C13—C12 | 116.23 (14) |
C6—C3—C2 | 123.90 (14) | C16—C13—C12 | 123.54 (15) |
N2—C4—C5 | 121.50 (16) | N7—C14—C15 | 122.10 (17) |
N2—C4—H4 | 119.3 | N7—C14—H14 | 119.0 |
C5—C4—H4 | 119.3 | C15—C14—H14 | 119.0 |
N3—C5—C4 | 122.44 (17) | N8—C15—C14 | 122.35 (17) |
N3—C5—H5 | 118.8 | N8—C15—H15 | 118.8 |
C4—C5—H5 | 118.8 | C14—C15—H15 | 118.8 |
N3—C6—C3 | 122.74 (17) | N8—C16—C13 | 122.89 (17) |
N3—C6—H6A | 118.6 | N8—C16—H16 | 118.6 |
C3—C6—H6A | 118.6 | C13—C16—H16 | 118.6 |
C2—N1—C1—O1 | 5.8 (2) | C9—N5—C10—C11 | 174.14 (14) |
C2—N1—C1—C7 | −171.79 (12) | N4—C7—C10—N5 | 4.4 (2) |
C1—N1—C2—C3 | 81.57 (18) | C1—C7—C10—N5 | −169.43 (14) |
C4—N2—C3—C6 | 0.5 (2) | N4—C7—C10—C11 | −171.71 (14) |
C4—N2—C3—C2 | −178.48 (14) | C1—C7—C10—C11 | 14.5 (2) |
N1—C2—C3—N2 | −176.08 (12) | C12—N6—C11—O2 | −5.5 (2) |
N1—C2—C3—C6 | 5.0 (2) | C12—N6—C11—C10 | 174.84 (12) |
C3—N2—C4—C5 | −0.5 (2) | N5—C10—C11—O2 | −125.27 (15) |
C6—N3—C5—C4 | 0.7 (3) | C7—C10—C11—O2 | 50.96 (19) |
N2—C4—C5—N3 | −0.1 (3) | N5—C10—C11—N6 | 54.42 (18) |
C5—N3—C6—C3 | −0.6 (3) | C7—C10—C11—N6 | −129.35 (15) |
N2—C3—C6—N3 | 0.1 (3) | C11—N6—C12—C13 | −77.41 (19) |
C2—C3—C6—N3 | 178.94 (18) | C14—N7—C13—C16 | 1.2 (2) |
C8—N4—C7—C10 | −2.3 (2) | C14—N7—C13—C12 | −178.84 (14) |
C8—N4—C7—C1 | 171.75 (16) | N6—C12—C13—N7 | 148.37 (14) |
O1—C1—C7—N4 | −132.13 (17) | N6—C12—C13—C16 | −31.7 (2) |
N1—C1—C7—N4 | 45.6 (2) | C13—N7—C14—C15 | −1.4 (3) |
O1—C1—C7—C10 | 42.0 (2) | C16—N8—C15—C14 | 1.0 (3) |
N1—C1—C7—C10 | −140.35 (15) | N7—C14—C15—N8 | 0.3 (3) |
C7—N4—C8—C9 | −1.7 (3) | C15—N8—C16—C13 | −1.2 (3) |
C10—N5—C9—C8 | −2.0 (3) | N7—C13—C16—N8 | 0.1 (3) |
N4—C8—C9—N5 | 4.0 (3) | C12—C13—C16—N8 | −179.88 (16) |
C9—N5—C10—C7 | −2.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.86 | 2.26 | 2.9940 (18) | 144 |
N6—H6···N2ii | 0.86 | 2.06 | 2.914 (2) | 174 |
C4—H4···O1iii | 0.93 | 2.52 | 3.369 (2) | 152 |
C5—H5···N7iv | 0.93 | 2.46 | 3.359 (3) | 162 |
C14—H14···O2v | 0.93 | 2.56 | 3.236 (2) | 130 |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x+1, y, z; (iii) −x, −y+1, −z+1; (iv) x−1, y−1, z; (v) −x+1, −y+2, −z+1. |
Acknowledgements
The authors would like to thank the Talent Introduction Project of Chongqing University of Arts and Sciences (No. R2012CH12) and the Science and Technology Research Project of Chongqing Municipal Education Committee (No. KJ131215) for financial support.
References
Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021–1030. Web of Science CSD CrossRef PubMed CAS Google Scholar
Cati, D. S. & Stoeckli-Evans, H. (2004a). Acta Cryst. E60, m174–m176. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cati, D. S. & Stoeckli-Evans, H. (2004b). Acta Cryst. E60, m177–m179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cati, D. S. & Stoeckli-Evans, H. (2004c). Acta Cryst. E60, o210–o212. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cati, D. S. & Stoeckli-Evans, H. (2004d). Acta Cryst. E60, m180–m182. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hausmann, J. & Brooker, S. (2004). Chem. Commun. pp. 1531–1531. Google Scholar
Hausmann, J., Jameson, G. B. & Brooker, S. (2003). Chem. Commun. pp. 2992–2993. Web of Science CSD CrossRef Google Scholar
Klingele (née Hausmann), J., Boas, J. F., Pilbrow, J. R., Moubaraki, B., Murray, K. S., Berry, K. J., Hunter, K. A., Jameson, G. B., Boyd, P. D. W. & Brooker, S. (2007). Dalton Trans. pp. 633–645. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.