organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N,N′-Bis(pyrazin-2-ylmeth­yl)pyrazine-2,3-dicarb­oxamide

CROSSMARK_Color_square_no_text.svg

aChongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, People's Republic of China
*Correspondence e-mail: ouwzdong@qq.com

Edited by J. Simpson, University of Otago, New Zealand (Received 5 October 2016; accepted 8 October 2016; online 14 October 2016)

The title compound, C16H14N8O2, was prepared by a condensation reaction between the dimethyl ester of pyrazine-2,3-di­carb­oxy­lic acid and an excess of 2-(amino­meth­yl)pyrazine. The mol­ecule is approximately V-shaped with the central pyrazine ring joined through amide linkages to two pyrazin-2-ylmethyl substituents. In the crystal, molecules are linked by N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds, forming a three-dimensional framework.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazine-based amide ligands have played a very important role in coordination chemistry (Cati et al., 2004[Cati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021-1030.]; Cati & Stoeckli-Evans, 2004a[Cati, D. S. & Stoeckli-Evans, H. (2004a). Acta Cryst. E60, m174-m176.],b[Cati, D. S. & Stoeckli-Evans, H. (2004b). Acta Cryst. E60, m177-m179.]; Klingele et al., 2007[Klingele (née Hausmann), J., Boas, J. F., Pilbrow, J. R., Moubaraki, B., Murray, K. S., Berry, K. J., Hunter, K. A., Jameson, G. B., Boyd, P. D. W. & Brooker, S. (2007). Dalton Trans. pp. 633-645.]). The crystal structure of a symmetrical di­amide ligand (Cati & Stoeckli-Evans, 2004c[Cati, D. S. & Stoeckli-Evans, H. (2004c). Acta Cryst. E60, o210-o212.]) and its bi- and tetra­nuclear copper(II) complexes have also been reported (Cati & Stoeckli-Evans, 2004d[Cati, D. S. & Stoeckli-Evans, H. (2004d). Acta Cryst. E60, m180-m182.]; Hausmann et al., 2003[Hausmann, J., Jameson, G. B. & Brooker, S. (2003). Chem. Commun. pp. 2992-2993.]; Hausmann & Brooker 2004[Hausmann, J. & Brooker, S. (2004). Chem. Commun. pp. 1531-1531.]). In order to expand the research scope of this pyrazine-2,3-bis­amide ligand system, we have prepared the title compound to investigate its potential use as a ligand in transition metal chemistry.

There are three pyrazine rings in the title compound (Fig. 1[link]). The outer pair are linked to the central pyrazine ring by two CH2–NH–C(O)–amide units, forming a V-shaped structure. The two outer pyrazine rings are inclined to the central ring by 48.98 (8) and 47.87 (8)°. In the crystal, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds generate a three-dimensional framework (Table 1[link] Fig. 2[link]). The coordination modes of the ligand system could be more flexible than those of previously reported pyrazine-based ligands due to the N atoms of the outer pyrazine rings. These could be used in a bridging sense with the potential to construct metal-organic frameworks.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.26 2.9940 (18) 144
N6—H6⋯N2ii 0.86 2.06 2.914 (2) 174
C4—H4⋯O1iii 0.93 2.52 3.369 (2) 152
C5—H5⋯N7iv 0.93 2.46 3.359 (3) 162
C14—H14⋯O2v 0.93 2.56 3.236 (2) 130
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x+1, y, z; (iii) -x, -y+1, -z+1; (iv) x-1, y-1, z; (v) -x+1, -y+2, -z+1.
[Figure 1]
Figure 1
The stucture of the title compound, showing the atom numbering with ellipsoids drawn at the 30% probability level
[Figure 2]
Figure 2
Crystal packing viewed along the a axis direction with hydrogen bonds shown as dashed lines.

Synthesis and crystallization

All reagents and solvents for the synthesis were purchased from commercial sources and used as received without further purification. The title compound was prepared by the condensation reaction of the dimethyl ester pyrazine-2,3-di­carboxyl­ate (3.92g, 20mmol) with 2-amino­methyl­pyrazine (2.18g, 20mmol) under reflux in 15mL of methanol for 12h. Solvent was removed by rotary evaporation to give a light-yellow solid. Recrystallization from CH3OH solution gave colorless crystals suitable for X-ray analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H14N8O2
Mr 350.35
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.1166 (18), 10.022 (2), 10.781 (2)
α, β, γ (°) 116.951 (2), 97.130 (2), 102.195 (2)
V3) 830.5 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.22 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 3527, 3527, 2595
Rint 0.016
(sin θ/λ)max−1) 0.653
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.132, 1.05
No. of reflections 3527
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.17
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N,N'-Bis(pyrazin-2-ylmethyl)pyrazine-2,3-dicarboxamide top
Crystal data top
C16H14N8O2Z = 2
Mr = 350.35F(000) = 364
Triclinic, P1Dx = 1.401 Mg m3
a = 9.1166 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.022 (2) ÅCell parameters from 2164 reflections
c = 10.781 (2) Åθ = 2.3–26.7°
α = 116.951 (2)°µ = 0.10 mm1
β = 97.130 (2)°T = 296 K
γ = 102.195 (2)°Block, colourless
V = 830.5 (3) Å30.22 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2595 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 27.7°, θmin = 2.2°
φ and ω scansh = 1111
3527 measured reflectionsk = 1311
3527 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0759P)2 + 0.0242P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3527 reflectionsΔρmax = 0.15 e Å3
235 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44574 (13)0.72355 (16)0.68709 (12)0.0573 (4)
O20.72074 (13)1.03109 (13)0.82972 (12)0.0489 (3)
N10.35307 (13)0.81613 (15)0.88449 (13)0.0423 (3)
H10.37400.85820.97660.051*
N20.04468 (13)0.59908 (14)0.66043 (13)0.0385 (3)
N30.0331 (2)0.3695 (2)0.7075 (2)0.0799 (6)
N40.59054 (16)0.72344 (19)0.99377 (15)0.0525 (4)
N50.88003 (14)0.81968 (16)0.94792 (13)0.0432 (3)
N60.84472 (14)0.86414 (16)0.69834 (13)0.0398 (3)
H60.88400.79050.68980.048*
N70.68896 (18)0.96134 (17)0.43602 (15)0.0522 (4)
N80.48052 (19)0.6643 (2)0.32238 (17)0.0695 (5)
C10.46175 (16)0.77287 (18)0.81589 (15)0.0379 (4)
C20.20077 (16)0.79296 (18)0.80565 (17)0.0424 (4)
H2A0.21190.81710.72910.051*
H2B0.15410.86590.86990.051*
C30.09378 (16)0.62856 (17)0.74138 (15)0.0360 (3)
C40.14353 (18)0.45555 (19)0.60466 (18)0.0490 (4)
H40.24140.43120.54820.059*
C50.1042 (2)0.3430 (2)0.6286 (2)0.0665 (6)
H50.17660.24430.58790.080*
C60.1310 (2)0.5138 (2)0.7640 (2)0.0610 (5)
H6A0.22850.53790.82110.073*
C70.60761 (16)0.78146 (17)0.90534 (15)0.0363 (3)
C80.7197 (2)0.7138 (2)1.0583 (2)0.0603 (5)
H80.71360.67661.12300.072*
C90.8614 (2)0.7568 (2)1.03266 (18)0.0517 (4)
H90.94650.74161.07570.062*
C100.75270 (16)0.83414 (17)0.88594 (14)0.0334 (3)
C110.77139 (16)0.91900 (18)0.80107 (15)0.0358 (3)
C120.86012 (18)0.9254 (2)0.60010 (17)0.0454 (4)
H12A0.94360.89780.55600.054*
H12B0.88841.03910.65440.054*
C130.71396 (17)0.86430 (18)0.48330 (15)0.0397 (4)
C140.5594 (2)0.9103 (2)0.33497 (19)0.0607 (5)
H140.53760.97630.30130.073*
C150.4576 (2)0.7646 (3)0.2793 (2)0.0645 (6)
H150.36860.73420.20840.077*
C160.6093 (2)0.7170 (2)0.42593 (19)0.0561 (5)
H160.62940.65150.46090.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0428 (7)0.0868 (9)0.0372 (6)0.0231 (6)0.0054 (5)0.0262 (6)
O20.0534 (7)0.0522 (7)0.0530 (7)0.0304 (6)0.0143 (5)0.0292 (6)
N10.0275 (6)0.0489 (8)0.0373 (7)0.0097 (6)0.0023 (5)0.0130 (6)
N20.0311 (6)0.0396 (7)0.0400 (7)0.0083 (6)0.0054 (5)0.0178 (6)
N30.0610 (11)0.0556 (10)0.1300 (16)0.0145 (9)0.0086 (11)0.0567 (11)
N40.0498 (8)0.0739 (10)0.0550 (9)0.0270 (7)0.0203 (7)0.0436 (8)
N50.0369 (7)0.0564 (8)0.0423 (7)0.0211 (6)0.0057 (6)0.0273 (7)
N60.0383 (7)0.0510 (8)0.0449 (7)0.0226 (6)0.0131 (6)0.0311 (6)
N70.0629 (9)0.0526 (9)0.0490 (8)0.0239 (7)0.0090 (7)0.0301 (7)
N80.0603 (10)0.0770 (12)0.0580 (10)0.0004 (9)0.0033 (8)0.0346 (9)
C10.0301 (8)0.0415 (8)0.0363 (8)0.0077 (6)0.0034 (6)0.0170 (7)
C20.0281 (8)0.0388 (8)0.0516 (9)0.0095 (6)0.0037 (6)0.0171 (7)
C30.0297 (7)0.0378 (8)0.0404 (8)0.0123 (6)0.0079 (6)0.0186 (7)
C40.0351 (9)0.0474 (10)0.0492 (9)0.0037 (7)0.0023 (7)0.0173 (8)
C50.0553 (12)0.0404 (10)0.0930 (15)0.0037 (9)0.0122 (11)0.0304 (10)
C60.0423 (10)0.0547 (11)0.0892 (14)0.0126 (8)0.0000 (9)0.0432 (11)
C70.0344 (8)0.0415 (8)0.0331 (7)0.0147 (6)0.0068 (6)0.0176 (6)
C80.0671 (12)0.0868 (14)0.0607 (11)0.0385 (11)0.0240 (9)0.0551 (11)
C90.0493 (10)0.0729 (12)0.0515 (10)0.0335 (9)0.0106 (8)0.0400 (9)
C100.0306 (7)0.0388 (8)0.0303 (7)0.0151 (6)0.0042 (5)0.0156 (6)
C110.0275 (7)0.0416 (8)0.0381 (8)0.0122 (6)0.0018 (6)0.0203 (7)
C120.0424 (9)0.0545 (10)0.0485 (9)0.0144 (8)0.0123 (7)0.0329 (8)
C130.0430 (9)0.0454 (9)0.0382 (8)0.0173 (7)0.0146 (7)0.0241 (7)
C140.0647 (12)0.0776 (14)0.0540 (11)0.0323 (11)0.0099 (9)0.0407 (10)
C150.0495 (11)0.0973 (17)0.0501 (11)0.0189 (11)0.0059 (8)0.0422 (11)
C160.0582 (11)0.0573 (11)0.0551 (10)0.0100 (9)0.0067 (9)0.0348 (9)
Geometric parameters (Å, º) top
O1—C11.2210 (17)C2—C31.505 (2)
O2—C111.2291 (18)C2—H2A0.9700
N1—C11.3376 (19)C2—H2B0.9700
N1—C21.4479 (18)C3—C61.377 (2)
N1—H10.8599C4—C51.372 (3)
N2—C41.3328 (19)C4—H40.9300
N2—C31.3333 (18)C5—H50.9300
N3—C51.323 (3)C6—H6A0.9300
N3—C61.335 (2)C7—C101.395 (2)
N4—C71.3312 (19)C8—C91.375 (3)
N4—C81.336 (2)C8—H80.9300
N5—C91.3327 (19)C9—H90.9300
N5—C101.3347 (18)C10—C111.507 (2)
N6—C111.3278 (19)C12—C131.509 (2)
N6—C121.4523 (18)C12—H12A0.9700
N6—H60.8601C12—H12B0.9700
N7—C141.328 (2)C13—C161.379 (2)
N7—C131.3311 (19)C14—C151.359 (3)
N8—C151.326 (3)C14—H140.9300
N8—C161.335 (2)C15—H150.9300
C1—C71.5046 (19)C16—H160.9300
C1—N1—C2120.84 (13)N4—C7—C10121.72 (14)
C1—N1—H1119.6N4—C7—C1116.92 (13)
C2—N1—H1119.6C10—C7—C1121.09 (13)
C4—N2—C3116.98 (14)N4—C8—C9122.50 (15)
C5—N3—C6115.74 (17)N4—C8—H8118.8
C7—N4—C8115.88 (14)C9—C8—H8118.7
C9—N5—C10116.27 (13)N5—C9—C8121.79 (15)
C11—N6—C12121.60 (13)N5—C9—H9119.1
C11—N6—H6119.2C8—C9—H9119.1
C12—N6—H6119.2N5—C10—C7121.65 (13)
C14—N7—C13116.96 (15)N5—C10—C11117.86 (12)
C15—N8—C16115.45 (17)C7—C10—C11120.38 (12)
O1—C1—N1123.67 (14)O2—C11—N6124.70 (14)
O1—C1—C7119.96 (14)O2—C11—C10119.93 (13)
N1—C1—C7116.32 (13)N6—C11—C10115.38 (13)
N1—C2—C3113.38 (13)N6—C12—C13113.24 (12)
N1—C2—H2A108.9N6—C12—H12A108.9
C3—C2—H2A108.9C13—C12—H12A108.9
N1—C2—H2B108.9N6—C12—H12B108.9
C3—C2—H2B108.9C13—C12—H12B108.9
H2A—C2—H2B107.7H12A—C12—H12B107.7
N2—C3—C6120.59 (14)N7—C13—C16120.23 (15)
N2—C3—C2115.50 (13)N7—C13—C12116.23 (14)
C6—C3—C2123.90 (14)C16—C13—C12123.54 (15)
N2—C4—C5121.50 (16)N7—C14—C15122.10 (17)
N2—C4—H4119.3N7—C14—H14119.0
C5—C4—H4119.3C15—C14—H14119.0
N3—C5—C4122.44 (17)N8—C15—C14122.35 (17)
N3—C5—H5118.8N8—C15—H15118.8
C4—C5—H5118.8C14—C15—H15118.8
N3—C6—C3122.74 (17)N8—C16—C13122.89 (17)
N3—C6—H6A118.6N8—C16—H16118.6
C3—C6—H6A118.6C13—C16—H16118.6
C2—N1—C1—O15.8 (2)C9—N5—C10—C11174.14 (14)
C2—N1—C1—C7171.79 (12)N4—C7—C10—N54.4 (2)
C1—N1—C2—C381.57 (18)C1—C7—C10—N5169.43 (14)
C4—N2—C3—C60.5 (2)N4—C7—C10—C11171.71 (14)
C4—N2—C3—C2178.48 (14)C1—C7—C10—C1114.5 (2)
N1—C2—C3—N2176.08 (12)C12—N6—C11—O25.5 (2)
N1—C2—C3—C65.0 (2)C12—N6—C11—C10174.84 (12)
C3—N2—C4—C50.5 (2)N5—C10—C11—O2125.27 (15)
C6—N3—C5—C40.7 (3)C7—C10—C11—O250.96 (19)
N2—C4—C5—N30.1 (3)N5—C10—C11—N654.42 (18)
C5—N3—C6—C30.6 (3)C7—C10—C11—N6129.35 (15)
N2—C3—C6—N30.1 (3)C11—N6—C12—C1377.41 (19)
C2—C3—C6—N3178.94 (18)C14—N7—C13—C161.2 (2)
C8—N4—C7—C102.3 (2)C14—N7—C13—C12178.84 (14)
C8—N4—C7—C1171.75 (16)N6—C12—C13—N7148.37 (14)
O1—C1—C7—N4132.13 (17)N6—C12—C13—C1631.7 (2)
N1—C1—C7—N445.6 (2)C13—N7—C14—C151.4 (3)
O1—C1—C7—C1042.0 (2)C16—N8—C15—C141.0 (3)
N1—C1—C7—C10140.35 (15)N7—C14—C15—N80.3 (3)
C7—N4—C8—C91.7 (3)C15—N8—C16—C131.2 (3)
C10—N5—C9—C82.0 (3)N7—C13—C16—N80.1 (3)
N4—C8—C9—N54.0 (3)C12—C13—C16—N8179.88 (16)
C9—N5—C10—C72.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.262.9940 (18)144
N6—H6···N2ii0.862.062.914 (2)174
C4—H4···O1iii0.932.523.369 (2)152
C5—H5···N7iv0.932.463.359 (3)162
C14—H14···O2v0.932.563.236 (2)130
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x1, y1, z; (v) x+1, y+2, z+1.
 

Acknowledgements

The authors would like to thank the Talent Introduction Project of Chongqing University of Arts and Sciences (No. R2012CH12) and the Science and Technology Research Project of Chongqing Municipal Education Committee (No. KJ131215) for financial support.

References

First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021–1030.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCati, D. S. & Stoeckli-Evans, H. (2004a). Acta Cryst. E60, m174–m176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCati, D. S. & Stoeckli-Evans, H. (2004b). Acta Cryst. E60, m177–m179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCati, D. S. & Stoeckli-Evans, H. (2004c). Acta Cryst. E60, o210–o212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCati, D. S. & Stoeckli-Evans, H. (2004d). Acta Cryst. E60, m180–m182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHausmann, J. & Brooker, S. (2004). Chem. Commun. pp. 1531–1531.  Google Scholar
First citationHausmann, J., Jameson, G. B. & Brooker, S. (2003). Chem. Commun. pp. 2992–2993.  Web of Science CSD CrossRef Google Scholar
First citationKlingele (née Hausmann), J., Boas, J. F., Pilbrow, J. R., Moubaraki, B., Murray, K. S., Berry, K. J., Hunter, K. A., Jameson, G. B., Boyd, P. D. W. & Brooker, S. (2007). Dalton Trans. pp. 633–645.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds