metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­aqua­tetra­kis­(di­methyl sulfoxide-κO)cobalt(II) bis­­[diammine­tetra­kis­(thio­cyanato-κN)chromate(III)] di­methyl sulfoxide hexa­solvate dihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bSSI `Institute for Single Crystals', National Academy of Sciences of Ukraine, 60 Lenina ave., Kharkiv 61072, Ukraine
*Correspondence e-mail: vika@xray.isc.kharkov.com

Edited by J. Simpson, University of Otago, New Zealand (Received 28 September 2016; accepted 6 October 2016; online 11 October 2016)

The solvated title salt, [Co(C2H6OS)4(H2O)2][Cr(NCS)4(NH3)2]·6C2H6OS·2H2O, is build up from a complex [Co(DMSO)4(H2O)2]2+ cation (where DMSO is dimethyl sulfoxide), two Reinecke's Salt anions, i.e. [Cr(NCS)4(NH3)2], as the complex counter-ions, together with solvent mol­ecules (six DMSO and two water). The crystal packing consists of a branched three-dimensional system of hydrogen bonds involving the DMSO and water solvent mol­ecules, the S atoms of the thio­cyanate ligands, and the coordinating NH3 and H2O mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The CoII atom of the complex cation lies on an inversion centre and, as shown in Fig. 1[link], adopts a slightly distorted octa­hedral coordination geometry. Four O atoms from DMSO ligands constitute the equatorial plane, with the O atoms of two coordinating water mol­ecules in axial positions.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, shown with 30% probability displacement ellipsoids.

The CrIII atom of the anion is also six-coordinate involving six N atoms, four from thio­cyanate ligands in the equatorial plane and two from ammine ligands in axial positions. The bond lengths and angles in the title complex agree well with those reported in closely related compounds (Schubert et al., 1981[Schubert, U., Zimmer-Gasser, B., Dash, K. C. & Chaudhury, G. R. (1981). Cryst. Struct. Commun. 10, 251-254.]; Tang et al., 1993[Tang, K., Kastner, M. E., Cooper, J. N., Kanaskie, M. & Monoski, A. (1993). Acta Cryst. C49, 1265-1267.]; Foust & Janickis, 1980[Foust, A. S. & Janickis, V. (1980). Inorg. Chem. 19, 1048-1050.]; Anbalagan et al., 2009[Anbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836-m837.]; Nikitina et al., 2008[Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426-2430.]). The title complex is most closely related to the salt [Mn(DMSO)4(H2O)2][Cr(NCS)4(NH3)2]·6DMSO·2H2O (Gerasimova et al., 2009[Gerasimova, E. A., Utkina, T. V., Peresypkina, E. V., Virovets, A. V. & Cherkasova, T. G. (2009). Russ. J. Inorg. Chem. 54, 692-697.]).

In the crystal structure of the title salt, cations are linked to anions and anions are linked to other anions both directly and through the DMSO and water solvent mol­ecules acting as bridges. The extensive series of hydrogen bonds (Table 1[link]) generates a three-dimensional network of anions, cations and solvent mol­ecules (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯S6i 0.89 2.76 3.647 (7) 176
N5—H5B⋯O5ii 0.89 2.17 3.019 (8) 160
N6—H6A⋯O4iii 0.89 2.03 2.874 (8) 158
N6—H6B⋯O4 0.89 2.22 3.037 (9) 152
N6—H6C⋯O6 0.89 2.22 3.069 (8) 160
O1W—H1WA⋯S6iv 0.85 2.55 3.293 (7) 147
O1W—H1WB⋯O6iv 0.85 1.89 2.711 (9) 163
C3—H3E⋯S6v 0.96 2.97 3.590 (9) 124
Symmetry codes: (i) -x-1, -y, -z; (ii) -x-1, -y+1, -z; (iii) -x-1, -y, -z+1; (iv) x, y+1, z; (v) -x, -y, -z.
[Figure 2]
Figure 2
The crystal packing of the title compound. Cation–anion chains are joined by hydrogen bonds (dashed lines) to the DMSO and H2O solvent mol­ecules.

Synthesis and crystallization

Cobalt powder (0.159 g, 2.70 mmol), NH4[Cr(NCS)4(NH3)2]·H2O (1.943 g, 5.4 mmol) and DMSO (20 ml) were heated in air at 323–333 K and stirred magnetically until the metal powder had completely dissolved. 2-Propanol was added dropwise after a few days to obtain a fine-grained red precipitate. Good quality single crystals suitable for X-ray analysis were obtained by recrystallization from DMSO with the addition of a few ml of Et2O. These were filtered off, washed with dry 2-propanol and finally dried in vacuo at room temperature (yield: 0.78 g, 37.5%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Co(C2H6OS)4(H2O)2][Cr(NCS)4(NH3)2]·6C2H6OS·2H2O
Mr 1549.05
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 294
a, b, c (Å) 11.752 (3), 12.212 (4), 13.257 (3)
α, β, γ (°) 85.95 (2), 87.98 (2), 70.17 (2)
V3) 1785.3 (9)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.11
Crystal size (mm) 0.6 × 0.4 × 0.2
 
Data collection
Diffractometer Siemens P3/PC
Absorption correction Analytical [Katayama (1986[Katayama, C. (1986). Acta Cryst. A42, 19-23.]) in WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.])]
Tmin, Tmax 0.604, 0.842
No. of measured, independent and observed [I > 2σ(I)] reflections 6478, 6138, 3459
Rint 0.056
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.195, 1.04
No. of reflections 6138
No. of parameters 352
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.23, −1.03
Computer programs: P3 (Siemens, 1991[Siemens (1991). P3/P4-PC Diffractometer Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]), XDISK in SHELXTL-Plus (Sheldrick, 1992[Sheldrick, G. M. (1992). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: P3 (Siemens, 1991); cell refinement: P3 (Siemens, 1991); data reduction: XDISK in SHELXTL-Plus (Sheldrick, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Diaquatetrakis(dimethyl sulfoxide-κO)cobalt(II) bis[diamminetetrakis(thiocyanato-κN)chromate(III)] dimethyl sulfoxide hexasolvate dihydrate top
Crystal data top
[Co(C2H6OS)4(H2O)2][Cr(NCS)4(NH3)2]·6C2H6OS·2H2OZ = 1
Mr = 1549.05F(000) = 807
Triclinic, P1Dx = 1.441 Mg m3
a = 11.752 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.212 (4) ÅCell parameters from 2015 reflections
c = 13.257 (3) Åθ = 3.5–25.0°
α = 85.95 (2)°µ = 1.11 mm1
β = 87.98 (2)°T = 294 K
γ = 70.17 (2)°Block, colourless
V = 1785.3 (9) Å30.6 × 0.4 × 0.2 mm
Data collection top
Siemens P3/PC
diffractometer
6138 independent reflections
Graphite monochromator3459 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.056
θ–2θ scansθmax = 25.1°, θmin = 1.8°
Absorption correction: analytical
[analytical correction (Katayama 1986) in WinGX (Farrugia, 2012)]
h = 814
Tmin = 0.604, Tmax = 0.842k = 1414
6478 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
6138 reflectionsΔρmax = 1.23 e Å3
352 parametersΔρmin = 1.03 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.50000.00000.0220 (3)
Cr10.62334 (11)0.13962 (9)0.24820 (8)0.0275 (3)
S10.07654 (17)0.28560 (14)0.07475 (14)0.0304 (4)
S20.12683 (18)0.59160 (14)0.17553 (13)0.0308 (4)
S30.3879 (2)0.3817 (2)0.2914 (2)0.0599 (7)
S40.9581 (2)0.3312 (2)0.45589 (19)0.0635 (7)
S50.8412 (2)0.12533 (19)0.23569 (18)0.0513 (6)
S60.2658 (2)0.0376 (2)0.05798 (18)0.0518 (6)
S70.1953 (2)0.01062 (19)0.47090 (19)0.0531 (6)
S80.4153 (3)0.2743 (2)0.44568 (18)0.0626 (7)
S90.49827 (18)0.64195 (18)0.07185 (15)0.0411 (5)
N10.5327 (5)0.2493 (5)0.2657 (4)0.0300 (14)
N20.7566 (6)0.2290 (5)0.3392 (5)0.0388 (16)
N30.7121 (5)0.0272 (5)0.2342 (4)0.0304 (14)
N40.4888 (6)0.0534 (5)0.1567 (5)0.0375 (16)
N50.7122 (6)0.2396 (5)0.1241 (4)0.0335 (14)
H5A0.71780.19310.07710.050*
H5B0.67110.28480.09900.050*
H5C0.78610.28400.14260.050*
N60.5326 (6)0.0345 (5)0.3673 (4)0.0365 (15)
H6A0.58550.02580.41420.055*
H6B0.48400.06690.39370.055*
H6C0.48870.03490.34590.055*
O1W0.1997 (6)0.7216 (5)0.2060 (5)0.067 (2)
H1WA0.23180.76640.15510.100*
H1WB0.25320.72450.25150.100*
O10.0946 (5)0.4937 (4)0.1327 (3)0.0309 (11)
O20.0271 (4)0.3229 (4)0.0310 (3)0.0271 (11)
O30.1606 (4)0.5446 (4)0.0842 (3)0.0290 (11)
H3A0.16350.57460.14140.044*
H3B0.23100.58140.05960.044*
O40.3298 (5)0.0593 (5)0.4896 (4)0.0486 (15)
O50.3876 (4)0.5990 (4)0.0043 (4)0.0362 (12)
O60.3761 (6)0.2221 (6)0.3498 (5)0.068 (2)
C10.0615 (9)0.6080 (8)0.2977 (6)0.062 (3)
H1A0.02460.64430.29250.093*
H1B0.09380.65590.33410.093*
H1C0.07980.53280.33300.093*
C20.2785 (8)0.5278 (7)0.2116 (7)0.050 (2)
H2A0.32880.50700.15240.076*
H2B0.28760.45910.25500.076*
H2C0.30220.58240.24700.076*
C30.0346 (8)0.1364 (6)0.0480 (7)0.049 (2)
H3C0.03600.13040.02370.074*
H3D0.09050.10320.08080.074*
H3E0.04550.09500.07250.074*
C40.0561 (9)0.2702 (8)0.2070 (6)0.061 (3)
H4A0.06220.34410.23150.091*
H4B0.02230.21460.22250.091*
H4C0.11730.24350.23910.091*
C50.4680 (6)0.3038 (6)0.2776 (5)0.0301 (16)
C60.8409 (8)0.2721 (7)0.3870 (6)0.0385 (19)
C70.7661 (7)0.0362 (6)0.2354 (5)0.0291 (16)
C80.3949 (8)0.0144 (6)0.1159 (5)0.0361 (18)
C90.5010 (9)0.7771 (8)0.1143 (7)0.060 (3)
H9A0.43470.76430.15910.090*
H9B0.57590.81280.14950.090*
H9C0.49390.82760.05730.090*
C100.6211 (8)0.6956 (7)0.0121 (8)0.056 (3)
H10A0.62690.63280.04890.084*
H10B0.60860.75440.05860.084*
H10C0.69460.72860.02570.084*
C110.1800 (11)0.0291 (14)0.3457 (10)0.122 (6)
H11A0.21140.09130.33980.183*
H11B0.09600.05460.32640.183*
H11C0.22410.03680.30220.183*
C120.1471 (9)0.1326 (8)0.4536 (8)0.067 (3)
H12A0.14470.16320.51800.101*
H12B0.20260.19150.41030.101*
H12C0.06790.10950.42320.101*
C130.3090 (12)0.4163 (9)0.4675 (11)0.106 (5)
H13A0.23560.41110.49280.159*
H13B0.29210.45490.40520.159*
H13C0.34160.46000.51620.159*
C140.5386 (10)0.3128 (8)0.4146 (8)0.068 (3)
H14A0.60290.24440.39040.102*
H14B0.56590.34770.47340.102*
H14C0.51520.36750.36270.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0229 (7)0.0162 (6)0.0226 (7)0.0010 (5)0.0027 (5)0.0031 (5)
Cr10.0321 (7)0.0245 (6)0.0240 (6)0.0068 (5)0.0012 (5)0.0028 (4)
S10.0295 (10)0.0218 (8)0.0378 (10)0.0066 (8)0.0001 (8)0.0006 (7)
S20.0398 (11)0.0252 (9)0.0263 (9)0.0088 (8)0.0005 (8)0.0054 (7)
S30.0625 (16)0.0475 (13)0.0787 (17)0.0294 (12)0.0204 (13)0.0010 (12)
S40.0650 (17)0.0701 (16)0.0529 (14)0.0178 (14)0.0334 (13)0.0293 (12)
S50.0531 (14)0.0431 (12)0.0645 (15)0.0253 (11)0.0003 (12)0.0022 (10)
S60.0393 (13)0.0578 (13)0.0565 (14)0.0125 (11)0.0195 (11)0.0209 (11)
S70.0456 (14)0.0470 (12)0.0621 (15)0.0115 (11)0.0013 (11)0.0049 (11)
S80.096 (2)0.0466 (13)0.0441 (13)0.0210 (14)0.0135 (13)0.0082 (10)
S90.0321 (11)0.0432 (11)0.0420 (11)0.0075 (9)0.0049 (9)0.0072 (9)
N10.018 (3)0.036 (3)0.025 (3)0.004 (3)0.002 (2)0.001 (3)
N20.050 (4)0.038 (3)0.030 (3)0.017 (3)0.004 (3)0.006 (3)
N30.023 (3)0.031 (3)0.032 (3)0.002 (3)0.004 (3)0.006 (3)
N40.038 (4)0.030 (3)0.036 (4)0.002 (3)0.004 (3)0.001 (3)
N50.036 (4)0.033 (3)0.028 (3)0.007 (3)0.000 (3)0.000 (2)
N60.037 (4)0.033 (3)0.033 (3)0.005 (3)0.003 (3)0.005 (3)
O1W0.073 (5)0.056 (4)0.057 (4)0.000 (4)0.002 (4)0.020 (3)
O10.042 (3)0.023 (2)0.028 (3)0.011 (2)0.005 (2)0.0024 (19)
O20.020 (2)0.025 (2)0.030 (3)0.001 (2)0.002 (2)0.0054 (19)
O30.027 (3)0.029 (2)0.030 (3)0.006 (2)0.005 (2)0.010 (2)
O40.055 (4)0.042 (3)0.044 (3)0.011 (3)0.016 (3)0.002 (3)
O50.024 (3)0.043 (3)0.036 (3)0.003 (2)0.001 (2)0.008 (2)
O60.065 (5)0.063 (4)0.061 (4)0.005 (4)0.016 (4)0.006 (3)
C10.078 (7)0.068 (6)0.034 (5)0.016 (6)0.011 (5)0.019 (4)
C20.050 (5)0.048 (5)0.059 (6)0.020 (4)0.007 (4)0.025 (4)
C30.044 (5)0.024 (4)0.081 (6)0.013 (4)0.001 (5)0.006 (4)
C40.072 (7)0.066 (6)0.035 (5)0.015 (5)0.015 (5)0.007 (4)
C50.025 (4)0.023 (3)0.041 (4)0.005 (3)0.016 (3)0.002 (3)
C60.047 (5)0.041 (4)0.027 (4)0.014 (4)0.016 (4)0.010 (3)
C70.037 (4)0.027 (4)0.024 (4)0.013 (4)0.004 (3)0.002 (3)
C80.046 (5)0.032 (4)0.029 (4)0.011 (4)0.004 (4)0.005 (3)
C90.057 (6)0.063 (6)0.063 (6)0.019 (5)0.004 (5)0.037 (5)
C100.035 (5)0.035 (4)0.091 (7)0.002 (4)0.027 (5)0.000 (5)
C110.073 (8)0.218 (17)0.098 (10)0.065 (10)0.027 (7)0.097 (11)
C120.062 (7)0.068 (6)0.075 (7)0.029 (6)0.016 (5)0.019 (5)
C130.121 (11)0.046 (6)0.152 (13)0.025 (7)0.071 (10)0.009 (7)
C140.085 (8)0.059 (6)0.074 (7)0.041 (6)0.003 (6)0.012 (5)
Geometric parameters (Å, º) top
Co1—O12.097 (5)N6—H6A0.8900
Co1—O1i2.097 (5)N6—H6B0.8900
Co1—O22.089 (4)N6—H6C0.8900
Co1—O2i2.088 (4)O1W—H1WA0.8499
Co1—O32.084 (4)O1W—H1WB0.8500
Co1—O3i2.084 (4)O3—H3A0.8600
Cr1—N12.003 (7)O3—H3B0.8600
Cr1—N21.998 (6)C1—H1A0.9600
Cr1—N32.007 (7)C1—H1B0.9600
Cr1—N41.999 (6)C1—H1C0.9600
Cr1—N52.065 (6)C2—H2A0.9600
Cr1—N62.045 (6)C2—H2B0.9600
S1—O21.523 (5)C2—H2C0.9600
S1—C31.777 (7)C3—H3C0.9600
S1—C41.767 (8)C3—H3D0.9600
S2—O11.521 (5)C3—H3E0.9600
S2—C11.763 (8)C4—H4A0.9600
S2—C21.755 (9)C4—H4B0.9600
S3—C51.571 (8)C4—H4C0.9600
S4—C61.606 (8)C9—H9A0.9600
S5—C71.617 (8)C9—H9B0.9600
S6—C81.620 (8)C9—H9C0.9600
S7—O41.506 (6)C10—H10A0.9600
S7—C111.748 (11)C10—H10B0.9600
S7—C121.762 (10)C10—H10C0.9600
S8—O61.509 (7)C11—H11A0.9600
S8—C131.771 (10)C11—H11B0.9600
S8—C141.739 (10)C11—H11C0.9600
S9—O51.513 (5)C12—H12A0.9600
S9—C91.772 (8)C12—H12B0.9600
S9—C101.766 (8)C12—H12C0.9600
N1—C51.189 (9)C13—H13A0.9600
N2—C61.145 (9)C13—H13B0.9600
N3—C71.154 (9)C13—H13C0.9600
N4—C81.173 (9)C14—H14A0.9600
N5—H5A0.8900C14—H14B0.9600
N5—H5B0.8900C14—H14C0.9600
N5—H5C0.8900
O1i—Co1—O1180.0H3A—O3—H3B103.1
O2—Co1—O187.58 (18)S2—C1—H1A109.5
O2i—Co1—O1i87.58 (17)S2—C1—H1B109.5
O2i—Co1—O192.42 (17)S2—C1—H1C109.5
O2—Co1—O1i92.42 (18)H1A—C1—H1B109.5
O2i—Co1—O2180.0H1A—C1—H1C109.5
O3i—Co1—O1i89.13 (19)H1B—C1—H1C109.5
O3i—Co1—O190.87 (19)S2—C2—H2A109.5
O3—Co1—O1i90.87 (19)S2—C2—H2B109.5
O3—Co1—O189.13 (19)S2—C2—H2C109.5
O3i—Co1—O289.38 (17)H2A—C2—H2B109.5
O3—Co1—O290.62 (17)H2A—C2—H2C109.5
O3i—Co1—O2i90.62 (17)H2B—C2—H2C109.5
O3—Co1—O2i89.38 (17)S1—C3—H3C109.5
O3—Co1—O3i180.0S1—C3—H3D109.5
N1—Cr1—N3178.4 (2)S1—C3—H3E109.5
N1—Cr1—N591.4 (2)H3C—C3—H3D109.5
N1—Cr1—N690.0 (2)H3C—C3—H3E109.5
N2—Cr1—N191.1 (2)H3D—C3—H3E109.5
N2—Cr1—N388.7 (2)S1—C4—H4A109.5
N2—Cr1—N4178.7 (3)S1—C4—H4B109.5
N2—Cr1—N590.4 (2)S1—C4—H4C109.5
N2—Cr1—N691.7 (2)H4A—C4—H4B109.5
N3—Cr1—N590.2 (2)H4A—C4—H4C109.5
N3—Cr1—N688.4 (3)H4B—C4—H4C109.5
N4—Cr1—N187.6 (2)N1—C5—S3177.1 (6)
N4—Cr1—N392.5 (2)N2—C6—S4179.0 (8)
N4—Cr1—N589.2 (2)N3—C7—S5179.4 (7)
N4—Cr1—N688.8 (2)N4—C8—S6179.0 (7)
N6—Cr1—N5177.5 (2)S9—C9—H9A109.5
O2—S1—C3104.2 (3)S9—C9—H9B109.5
O2—S1—C4105.4 (4)S9—C9—H9C109.5
C4—S1—C399.8 (4)H9A—C9—H9B109.5
O1—S2—C1105.9 (4)H9A—C9—H9C109.5
O1—S2—C2105.0 (3)H9B—C9—H9C109.5
C2—S2—C197.8 (5)S9—C10—H10A109.5
O4—S7—C11104.8 (5)S9—C10—H10B109.5
O4—S7—C12105.7 (4)S9—C10—H10C109.5
C11—S7—C1298.3 (6)H10A—C10—H10B109.5
O6—S8—C13107.0 (6)H10A—C10—H10C109.5
O6—S8—C14106.6 (5)H10B—C10—H10C109.5
C14—S8—C1398.5 (6)S7—C11—H11A109.5
O5—S9—C9106.8 (4)S7—C11—H11B109.5
O5—S9—C10104.8 (4)S7—C11—H11C109.5
C10—S9—C998.2 (4)H11A—C11—H11B109.5
C5—N1—Cr1172.9 (5)H11A—C11—H11C109.5
C6—N2—Cr1171.4 (7)H11B—C11—H11C109.5
C7—N3—Cr1173.8 (6)S7—C12—H12A109.5
C8—N4—Cr1164.3 (7)S7—C12—H12B109.5
Cr1—N5—H5A109.5S7—C12—H12C109.5
Cr1—N5—H5B109.5H12A—C12—H12B109.5
Cr1—N5—H5C109.5H12A—C12—H12C109.5
H5A—N5—H5B109.5H12B—C12—H12C109.5
H5A—N5—H5C109.5S8—C13—H13A109.5
H5B—N5—H5C109.5S8—C13—H13B109.5
Cr1—N6—H6A109.5S8—C13—H13C109.5
Cr1—N6—H6B109.5H13A—C13—H13B109.5
Cr1—N6—H6C109.5H13A—C13—H13C109.5
H6A—N6—H6B109.5H13B—C13—H13C109.5
H6A—N6—H6C109.5S8—C14—H14A109.5
H6B—N6—H6C109.5S8—C14—H14B109.5
H1WA—O1W—H1WB109.7S8—C14—H14C109.5
S2—O1—Co1127.9 (3)H14A—C14—H14B109.5
S1—O2—Co1119.5 (2)H14A—C14—H14C109.5
Co1—O3—H3A119.3H14B—C14—H14C109.5
Co1—O3—H3B124.5
C1—S2—O1—Co1122.0 (5)C3—S1—O2—Co1160.4 (4)
C2—S2—O1—Co1135.1 (4)C4—S1—O2—Co195.1 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···S6ii0.892.763.647 (7)176
N5—H5B···O5iii0.892.173.019 (8)160
N6—H6A···O4iv0.892.032.874 (8)158
N6—H6B···O40.892.223.037 (9)152
N6—H6C···O60.892.223.069 (8)160
O1W—H1WA···S6v0.852.553.293 (7)147
O1W—H1WB···O6v0.851.892.711 (9)163
C3—H3E···S6vi0.962.973.590 (9)124
Symmetry codes: (ii) x1, y, z; (iii) x1, y+1, z; (iv) x1, y, z+1; (v) x, y+1, z; (vi) x, y, z.
 

References

First citationAnbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836–m837.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFoust, A. S. & Janickis, V. (1980). Inorg. Chem. 19, 1048–1050.  CSD CrossRef CAS Web of Science Google Scholar
First citationGerasimova, E. A., Utkina, T. V., Peresypkina, E. V., Virovets, A. V. & Cherkasova, T. G. (2009). Russ. J. Inorg. Chem. 54, 692–697.  Web of Science CrossRef Google Scholar
First citationKatayama, C. (1986). Acta Cryst. A42, 19–23.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchubert, U., Zimmer-Gasser, B., Dash, K. C. & Chaudhury, G. R. (1981). Cryst. Struct. Commun. 10, 251–254.  CAS Google Scholar
First citationSheldrick, G. M. (1992). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1991). P3/P4-PC Diffractometer Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTang, K., Kastner, M. E., Cooper, J. N., Kanaskie, M. & Monoski, A. (1993). Acta Cryst. C49, 1265–1267.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds