organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(4-Chloro­phen­yl)-4-phenyl­thio­sydnone

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Wright State University, Dayton, Ohio 45435, USA
*Correspondence e-mail: david.grossie@wright.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 21 September 2016; accepted 7 October 2016; online 14 October 2016)

In the structure of C14H9ClN2O2S [systematic name: 3-(4-chloro­phen­yl)-4-(phenyl­sulfan­yl)-1,2,3λ5-oxa­diazol-3-ylium-5-olate], the central sydnone ring is inclined at angles of 67.49 (10)° to the phenyl ring of the thio­phenyl substituent and 52.61 (10)° to the chloro­phenyl ring. The compound crystallizes utilizing a network of weak S and Cl-based hydrogen bonds, together with S⋯π, O⋯π and C—H⋯π inter­actions, forming a three-dimensional structure. In spite of having three planar rings, no ππ inter­actions are found.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was prepared as part of a project exploring the li­thia­tion chemistry of substituted aryl­sydnones with the expectation that improved avenues to otherwise difficultly accessible sydnones would result (Grossie, et al., 2007[Grossie, D. A., Sun, L. & Turnbull, K. (2007). Acta Cryst. E63, o2042-o2043.]; Turnbull & Krein, 1997[Turnbull, K. & Krein, D. M. (1997). Tetrahedron Lett. 38, 1165-1168.]; Turnbull et al., 1998[Turnbull, K., Sun, C. & Krein, D. M. (1998). Tetrahedron Lett. 39, 1509-1512.]). The sydnone and phenyl rings in the title mol­ecule, Fig. 1[link], are each planar with a maximum r.m.s. deviation of less than 0.01 Å found for all three rings. None of the three rings are coplanar with each other nor are they in close face-to-face proximity. Relative to the sydnone ring, the phenyl ring of the thio­phenyl substituent is inclined at an angle of 67.49 (10)° while the sydnone and chloro­phenyl rings are rotated by 52.61 (10)° to one another.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with ellipsoids drawn at the 50% probability level.

In the crystal, no classical hydrogen bonds are found; however, non-classical hydrogen bonds are present involving sulfur and chlorine as the hydrogen-bond acceptor and carbon as the hydrogen-bond donor. A C—H⋯π hydrogen bond is also found, Table 1[link]. In addition there are S⋯π and O⋯π, contacts, Fig. 2[link], with distance and angle data detailed in Table 2[link] and 3[link]. Mol­ecules are also linked into sets of three, on one side by C—H⋯Cl hydrogen bonds and on the other by O⋯π inter­actions. These trimers are inter­connected by a C32—H32⋯S1 hydrogen bond forming a chain of mol­ecules approximately along the bc diagonal, Fig. 3[link]. Overall these contacts combine to generate an extensive three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C41–C46 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C46—H46⋯Cl1i 0.93 2.96 3.388 (2) 109
C32—H32⋯S1ii 0.93 2.99 3.797 (2) 146
C33—H33⋯Cg1iii 0.93 2.74 3.498 (2) 140
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+1, -y-{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 2
Analysis of YXCg(π-ring) inter­actions (Å, °)

Gamma is the angle between the Cg–H vector and the normal to the ring. Cg2 is the centroid of the O1/N2/N3/C4/C5 ring.

YXCg XCg X-Perp Gamma YXCg
C5—O5⋯Cg2ii 3.529 (2) 3.261 22.45 140.29 (14)
Symmetry code: (ii) −x + [{3\over 2}], y + [{1\over 2}], z.

Table 3
Analysis of lone pair–π ring [XCg(π-ring)] inter­actions (Å, °)

Cg1 and Cg3 are the centroids of the C41–C46 and C31–C36 rings, respectively.

XCg XCg YXCg X-Perp Gamma
S1⋯Cg1 3.487 (2) 95.73 3.447 8.69
O1⋯Cg3 3.349 (3) 118.55 3.188 17.84
Symmetry codes: (iii) −x + [{3\over 2}], y − [{1\over 2}], z; (iv) −x + 1, y- 1/2, −z + [{1\over 2}].
[Figure 2]
Figure 2
C—H⋯π and Xπ contacts.
[Figure 3]
Figure 3
Chains of mol­ecules along the bc diagonal.

Synthesis and crystallization

The title compound was prepared from 3-(4-chloro­phen­yl)sydnone by treatment with n-BuLi (1.7 equivalents) at −40°C followed by addition of diphenyl di­sulfide (1.1 equivalents). Column chromatography on silica gel using di­chloro­methane as eluent and subsequent recrystallization from di­chloro­methane solution afforded the product as colorless needles in 57% yield (Dossa, 2006[Dossa, A. (2006). MSc thesis, Wright State University, USA.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link].

Table 4
Experimental details

Crystal data
Chemical formula C14H9ClN2O2S
Mr 304.74
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 173
a, b, c (Å) 12.5782 (11), 9.7406 (9), 22.2168 (19)
V3) 2722.0 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.44
Crystal size (mm) 0.7 × 0.7 × 0.6
 
Data collection
Diffractometer Bruker Smart X2S
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.904, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 33900, 2973, 2413
Rint 0.048
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.091, 1.04
No. of reflections 2973
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.47
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.])'.

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008)'.

3-(4-Chlorophenyl)-4-(phenylsulfanyl)-1,2,3λ5-oxadiazol-3-ylium-5-olate top
Crystal data top
C14H9ClN2O2SDx = 1.487 Mg m3
Mr = 304.74Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 7304 reflections
a = 12.5782 (11) Åθ = 2.4–23.9°
b = 9.7406 (9) ŵ = 0.44 mm1
c = 22.2168 (19) ÅT = 173 K
V = 2722.0 (4) Å3Block, yellow
Z = 80.7 × 0.7 × 0.6 mm
F(000) = 1248
Data collection top
Bruker Smart X2S
diffractometer
2413 reflections with I > 2σ(I)
Radiation source: Incoatec Microfocus SourceRint = 0.048
ω scansθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1615
Tmin = 0.904, Tmax = 1.000k = 1112
33900 measured reflectionsl = 2828
2973 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.033P)2 + 1.677P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2973 reflectionsΔρmax = 0.38 e Å3
181 parametersΔρmin = 0.47 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

Ring 1 7.261 (10) x + 7.749 (6) y + -4.09 (2) z = 4.563 (9)

* 0.007 (2) O(1) * -0.003 (2) N(2) * -0.003 (2) N(3) * 0.007 (2) C(4) * -0.008 (2) C(5)

Ring 2 0.671 (11) x + -6.051 (6) y + 17.371 (11) z = 4.516 (8)

* -0.005 (2) C(31) * -0.002 (2) C(32) * 0.007 (2) C(33) * -0.006 (2) C(34) * 0.000 (2) C(35) * 0.006 (2) C(36)

Ring 3 -6.513 (9) x + 8.333 (4) y + -0.141 (19) z = -3.552 (12)

* -0.008 (2) C(41) * 0.000 (2) C(42) * 0.007 (2) C(43) * -0.006 (2) C(44) * -0.003 (2) C(45) * 0.010 (2) C(46)

Ring Ring Angle

1 2 52.61 (10) 1 3 67.49 (10) 2 3 55.67 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.70839 (4)0.11292 (5)0.39942 (2)0.03326 (13)
Cl10.28185 (5)0.54265 (6)0.43739 (4)0.0711 (2)
O10.64891 (13)0.10104 (17)0.22602 (6)0.0549 (4)
N30.58757 (12)0.19843 (16)0.30413 (6)0.0346 (3)
O50.79114 (13)0.01484 (17)0.26453 (6)0.0563 (4)
N20.56899 (15)0.18549 (19)0.24655 (8)0.0509 (5)
C310.51284 (15)0.28083 (19)0.33771 (8)0.0349 (4)
C40.67396 (15)0.12955 (18)0.32453 (8)0.0325 (4)
C410.82162 (15)0.22185 (18)0.40756 (8)0.0324 (4)
C50.71701 (17)0.0605 (2)0.27391 (8)0.0422 (5)
C320.55037 (16)0.38634 (19)0.37319 (9)0.0390 (4)
H320.62290.40350.37620.047*
C460.85093 (17)0.2479 (2)0.46683 (9)0.0433 (5)
H460.80820.21740.49830.052*
C360.40563 (15)0.2517 (2)0.33229 (9)0.0427 (5)
H360.38240.17910.30850.051*
C420.88276 (15)0.2698 (2)0.36062 (9)0.0408 (4)
H420.86270.25340.32100.049*
C340.37116 (16)0.4392 (2)0.39826 (10)0.0447 (5)
C330.47785 (17)0.4662 (2)0.40430 (9)0.0447 (5)
H330.50100.53720.42900.054*
C350.33365 (16)0.3330 (2)0.36306 (10)0.0478 (5)
H350.26100.31630.36010.057*
C430.97527 (17)0.3432 (2)0.37342 (11)0.0537 (6)
H431.01700.37690.34220.064*
C441.00502 (18)0.3659 (2)0.43267 (13)0.0599 (7)
H441.06740.41340.44100.072*
C450.9434 (2)0.3189 (2)0.47894 (11)0.0568 (6)
H450.96380.33480.51860.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0378 (3)0.0360 (2)0.0261 (2)0.00063 (19)0.00220 (18)0.00344 (18)
Cl10.0543 (4)0.0476 (3)0.1115 (5)0.0168 (3)0.0348 (3)0.0146 (3)
O10.0634 (10)0.0715 (11)0.0299 (7)0.0099 (8)0.0076 (6)0.0115 (7)
N30.0378 (9)0.0376 (8)0.0283 (7)0.0029 (7)0.0045 (6)0.0009 (6)
O50.0579 (10)0.0635 (10)0.0476 (9)0.0153 (8)0.0020 (7)0.0154 (8)
N20.0561 (11)0.0646 (12)0.0319 (8)0.0078 (9)0.0108 (8)0.0033 (8)
C310.0343 (10)0.0358 (10)0.0345 (9)0.0007 (8)0.0003 (7)0.0078 (8)
C40.0345 (10)0.0343 (9)0.0288 (8)0.0002 (8)0.0026 (7)0.0001 (7)
C410.0346 (9)0.0278 (9)0.0349 (9)0.0067 (7)0.0034 (7)0.0040 (7)
C50.0474 (12)0.0477 (11)0.0315 (9)0.0012 (10)0.0035 (8)0.0051 (8)
C320.0335 (10)0.0353 (10)0.0482 (11)0.0051 (8)0.0052 (8)0.0025 (8)
C460.0562 (13)0.0364 (10)0.0374 (10)0.0060 (10)0.0103 (9)0.0066 (8)
C360.0357 (11)0.0458 (11)0.0464 (11)0.0044 (9)0.0083 (9)0.0088 (9)
C420.0412 (11)0.0377 (10)0.0435 (10)0.0002 (9)0.0055 (9)0.0103 (9)
C340.0379 (11)0.0353 (10)0.0610 (13)0.0077 (9)0.0142 (9)0.0187 (10)
C330.0447 (12)0.0323 (10)0.0570 (12)0.0033 (9)0.0127 (10)0.0022 (9)
C350.0287 (10)0.0526 (13)0.0623 (13)0.0004 (9)0.0012 (9)0.0196 (11)
C430.0427 (12)0.0421 (12)0.0763 (16)0.0027 (10)0.0171 (11)0.0167 (11)
C440.0400 (12)0.0426 (12)0.0972 (19)0.0029 (10)0.0145 (13)0.0307 (13)
C450.0610 (15)0.0480 (13)0.0615 (14)0.0078 (11)0.0218 (12)0.0191 (11)
Geometric parameters (Å, º) top
S1—C41.7268 (17)C46—H460.9300
S1—C411.7852 (19)C46—C451.380 (3)
Cl1—C341.742 (2)C36—H360.9300
O1—N21.377 (2)C36—C351.383 (3)
O1—C51.422 (2)C42—H420.9300
N3—N21.307 (2)C42—C431.395 (3)
N3—C311.444 (2)C34—C331.374 (3)
N3—C41.355 (2)C34—C351.380 (3)
O5—C51.205 (2)C33—H330.9300
C31—C321.379 (3)C35—H350.9300
C31—C361.383 (3)C43—H430.9300
C4—C51.418 (3)C43—C441.386 (3)
C41—C461.391 (2)C44—H440.9300
C41—C421.377 (3)C44—C451.366 (4)
C32—H320.9300C45—H450.9300
C32—C331.384 (3)
C4—S1—C41104.00 (9)C31—C36—H36120.7
N2—O1—C5110.98 (14)C31—C36—C35118.5 (2)
N2—N3—C31116.30 (15)C35—C36—H36120.7
N2—N3—C4115.04 (16)C41—C42—H42120.5
C4—N3—C31128.65 (14)C41—C42—C43119.01 (19)
N3—N2—O1104.56 (15)C43—C42—H42120.5
C32—C31—N3119.14 (16)C33—C34—Cl1118.05 (18)
C32—C31—C36122.44 (19)C33—C34—C35122.20 (19)
C36—C31—N3118.42 (17)C35—C34—Cl1119.75 (16)
N3—C4—S1124.74 (13)C32—C33—H33120.4
N3—C4—C5106.01 (15)C34—C33—C32119.2 (2)
C5—C4—S1128.61 (15)C34—C33—H33120.4
C46—C41—S1114.58 (15)C36—C35—H35120.5
C42—C41—S1124.76 (14)C34—C35—C36119.03 (19)
C42—C41—C46120.47 (19)C34—C35—H35120.5
O5—C5—O1120.41 (17)C42—C43—H43120.0
O5—C5—C4136.19 (19)C44—C43—C42120.0 (2)
C4—C5—O1103.40 (17)C44—C43—H43120.0
C31—C32—H32120.7C43—C44—H44119.7
C31—C32—C33118.61 (18)C45—C44—C43120.5 (2)
C33—C32—H32120.7C45—C44—H44119.7
C41—C46—H46120.0C46—C45—H45120.0
C45—C46—C41120.0 (2)C44—C45—C46120.0 (2)
C45—C46—H46120.0C44—C45—H45120.0
S1—C4—C5—O1172.40 (14)C31—C36—C35—C340.5 (3)
S1—C4—C5—O58.6 (4)C4—S1—C41—C46167.36 (14)
S1—C41—C46—C45173.35 (16)C4—S1—C41—C4217.73 (18)
S1—C41—C42—C43173.76 (15)C4—N3—N2—O10.0 (2)
Cl1—C34—C33—C32179.33 (15)C4—N3—C31—C3254.0 (3)
Cl1—C34—C35—C36179.97 (15)C4—N3—C31—C36126.9 (2)
N3—C31—C32—C33178.85 (17)C41—S1—C4—N3107.63 (16)
N3—C31—C36—C35178.18 (16)C41—S1—C4—C582.94 (19)
N3—C4—C5—O11.4 (2)C41—C46—C45—C441.3 (3)
N3—C4—C5—O5179.5 (2)C41—C42—C43—C440.6 (3)
N2—O1—C5—O5179.30 (19)C5—O1—N2—N30.9 (2)
N2—O1—C5—C41.5 (2)C32—C31—C36—C350.9 (3)
N2—N3—C31—C32127.57 (19)C46—C41—C42—C430.9 (3)
N2—N3—C31—C3651.6 (2)C36—C31—C32—C330.2 (3)
N2—N3—C4—S1172.41 (15)C42—C41—C46—C451.8 (3)
N2—N3—C4—C51.0 (2)C42—C43—C44—C451.1 (3)
C31—N3—N2—O1178.59 (15)C33—C34—C35—C360.7 (3)
C31—N3—C4—S16.0 (3)C35—C34—C33—C321.4 (3)
C31—N3—C4—C5177.46 (17)C43—C44—C45—C460.2 (3)
C31—C32—C33—C340.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C41–C46 ring.
D—H···AD—HH···AD···AD—H···A
C46—H46···Cl1i0.932.963.388 (2)109
C32—H32···S1ii0.932.993.797 (2)146
C33—H33···Cg1iii0.932.743.498 (2)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z; (iii) x+1, y3/2, z1/2.
Analysis of YX···Cg(π-ring) interactions (Å, °) top
Gamma is the angle between the Cg–H vector and the normal to the ring. Cg2 is the centroid of the O1/N2/N3/C4/C5 ring.
YX···CgX···CgX-PerpGammaYX···Cg
C5—O5···Cg2ii3.529 (2)3.26122.45140.29 (14)
Symmetry code: (ii) -x + 3/2, y + 1/2, z.
Analysis of lone pair–π ring [X···Cg(π-ring)] interactions (Å, °) top
Cg1 and Cg3 are the centroids of the C41–C46 and C31–C36 rings, respectively.
X···CgX···CgYX···CgX-PerpGamma
S1···Cg13.487 (2)95.733.4478.69
O1···Cg33.349 (3)118.553.18817.84
Symmetry codes: (iii) -x + 3/2, y - 1/2, z; (iv) -x + 1, y- 1/2, -z + 1/2.
 

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDossa, A. (2006). MSc thesis, Wright State University, USA.  Google Scholar
First citationGrossie, D. A., Sun, L. & Turnbull, K. (2007). Acta Cryst. E63, o2042–o2043.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurnbull, K. & Krein, D. M. (1997). Tetrahedron Lett. 38, 1165–1168.  CrossRef CAS Web of Science Google Scholar
First citationTurnbull, K., Sun, C. & Krein, D. M. (1998). Tetrahedron Lett. 39, 1509–1512.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds