organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Benz­yl­oxy-1-oxa­spiro­[4.6]undec-3-en-2-one

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigacion en Quimica Estructural (GIQUE), Escuela de Quimica, Facultad de Ciencias, Universidad Industrial de Santander, A.P. 680002, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia, and bLaboratorio de Quimica Organica y Biomolecular (LQOBio), Escuela de Quimica, Facultad de Ciencias, Universidad Industrial de Santander, A.P. 680002, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
*Correspondence e-mail: josehernandoquintana@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 5 September 2016; accepted 30 September 2016; online 4 October 2016)

The title compound, C17H20O3, the cyclo­heptane ring adopts a slightly distorted chair conformation. The planar five-membered ring is inclined at 57.13 (11)° to the phenyl ring of the benz­yloxy substituent. In the crystal structure, C—H⋯O and C—H⋯π hydrogen bonds generate layers in the ac plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The 4-hy­droxy­furan-2[5H]-one core (β-tetronic acid) is present in diverse compounds isolated from natural products. These compounds have shown a variety of biological activities (Schobert & Schlenk, 2008[Schobert, R. & Schlenk, A. (2008). Bioorg. Med. Chem. 16, 4203-4221.]). The synthesis and structural analysis of related derivatives continues to be of significant inter­est. Although several methodologies have been reported for their preparation, most of them use expensive organic starting materials as the synthesis is complex (Tejedor & García-Tellado, 2004[Tejedor, D. & García-Tellado, F. (2004). Org. Prep. Proced. Int. 36, 33-59.]). α-Hy­droxy­esters and their cyclo­alkane derivatives can be easily prepared and then used for the direct synthesis of butenolides (furan-2[5H]-ones) through an addition followed by a Wittig olefination reaction using the accumulated ylide Ph3P=C=C=O; the use of cyclo­alkane-α-hy­droxy­esters allows the preparation of spiro systems of analogous substances with anti­viral and anti­cancer activities among their most important properties (Schobert, 2007[Schobert, R. (2007). Naturwissenschaften, 94, 1-11.]).

In the title compound (Fig. 1[link]), the cyclo­heptane ring adopts a slightly distorted chair conformation with q2 = 0.438 (3) Å and φ = 20.8 (4)°. The orientation of the five-membered ring (O1/C1/C4/C3/C2) with respect to the cyclo­heptane ring is similar to that reported by Schobert et al. (2001[Schobert, R., Siegfried, S., Weingärtner, J. & Nieuwenhuyzen, M. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 2009-2011.]) for spiro-compounds with seven membered rings. The mean plane of the five-membered ring forms a dihedral angle of 57.13 (11)° with the phenyl ring of the benzyloxy substituent. In the molecule there is a very weak C9—H9B⋯O1 contact present (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O1 0.97 2.56 2.987 (3) 106
C16—H16⋯O2i 0.93 2.53 3.362 (3) 149
C7—H7BCg2ii 0.97 2.80 3.750 (3) 165
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
View of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

In the crystal, mol­ecules are connected by C16—H16⋯O2 contacts, generating zigzag C(10) chains parallel to the c axis (Fig. 2[link]). C7—H7Bπ inter­actions form between the cyclo­heptane ring and the centroid Cg2 of the benzene ring. These contacts link the mol­ecules into dimers, forming inversion dimers (Fig. 3[link]), and creating double chains of mol­ecules approximately along [01[\overline1]]. These double chains, shown in orange and green in Fig. 4[link], are further arranged back-to-back forming a layer structure.

[Figure 2]
Figure 2
A view of the C—H⋯O hydrogen-bonded chain in the crystal structure of the title compound (see Table 1[link]).
[Figure 3]
Figure 3
Inversion dimers formed by C—H⋯π inter­actions.
[Figure 4]
Figure 4
A view along the b axis showing the separate zigzag chains.

The PDF-4/Organics (ICDD, 2012[ICDD (2012). PDF-4/Organics 2012 (Database), edited by S. Kabekkodu, International Centre for Diffraction Data, Newtown Square, PA, USA.]) and the Cambridge Structural Database (CSD) (Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) both confirm that this is the first report of the structure of this material.

Synthesis and crystallization

In a 250 ml Schlenk round-bottom flask under an argon atmosphere, 2.18 g (7.21 mmol) of keteneylidenetri­phenyl­phospho­rane (Ph3P=C=C=O) and 150 ml of anhydrous toluene (freshly distilled over sodium) were added and stirred magnetically. 0.87 g (3.50 mmol) of benzyl-1-hy­droxy­cyclo­hepta­necarboxyl­ate, previously dried under vacuum for 1 h, were then added. The reaction mixture was heated under reflux for 72 h (completion of the reaction was monitored by thin-layer chromatography). Toluene was removed by rotary evaporation. Tri­phenyl­phosphine oxide (TPPO) formed during the reaction was removed by dissolving the reaction residue in methyl­ene chloride and then filtering it through a small column of silica gel (60 to 120 mesh). The methyl­ene chloride was removed by rotary evaporation and the residual crude product was purified by column chromatography using silica gel (60 to 120 mesh) and hexa­ne–ethyl acetate (5:1) as eluents to afford the pure title compound (yield 70%). Rf = 0.4 (SiO2, hexa­ne:ethyl acetate, 5:2). Colourless plate-shaped crystals were grown by slow evaporation in air at room temperature from a 1:1 ethyl acetate:ethanol solution [61% yield, m.p. 368 K].

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H20O3
Mr 272.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 13.1661 (9), 5.9457 (4), 19.6730 (13)
β (°) 105.774 (3)
V3) 1482.04 (17)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.66
Crystal size (mm) 0.26 × 0.17 × 0.08
 
Data collection
Diffractometer Rigaku Pilatus 200K
Absorption correction Analytical (Alcock, 1974[Alcock, N. W. (1974). Acta Cryst. A30, 332-335.])
Tmin, Tmax 0.653, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10788, 2663, 1961
Rint 0.028
(sin θ/λ)max−1) 0.601
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.159, 1.12
No. of reflections 2663
No. of parameters 182
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.19
Computer programs: CrystalClear-SM Expert (Rigaku, 2015[Rigaku (2015). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2015); cell refinement: CrystalClear-SM Expert (Rigaku, 2015); data reduction: CrystalClear-SM Expert (Rigaku, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXL2014 (Sheldrick, 2015b); software used to prepare material for publication: PLATON (Spek, 2009).

4-Benzyloxy-1-oxaspiro[4.6]undec-3-en-2-one top
Crystal data top
C17H20O3F(000) = 584
Mr = 272.33Dx = 1.220 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ynCell parameters from 75 reflections
a = 13.1661 (9) Åθ = 6.6–68.3°
b = 5.9457 (4) ŵ = 0.66 mm1
c = 19.6730 (13) ÅT = 298 K
β = 105.774 (3)°Plate, colorless
V = 1482.04 (17) Å30.26 × 0.17 × 0.08 mm
Z = 4
Data collection top
Rigaku Pilatus 200K
diffractometer
2663 independent reflections
Confocal monochromator1961 reflections with I > 2σ(I)
Detector resolution: 5.8140 pixels mm-1Rint = 0.028
profile data from ω–scansθmax = 68.0°, θmin = 7.0°
Absorption correction: analytical
(Alcock, 1974)
h = 1514
Tmin = 0.653, Tmax = 1.000k = 76
10788 measured reflectionsl = 2323
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 W = 1/[Σ2(FO2) + (0.0944P)2 + 0.0383P] WHERE P = (FO2 + 2FC2)/3
wR(F2) = 0.159(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.43 e Å3
2663 reflectionsΔρmin = 0.19 e Å3
182 parametersExtinction correction: shelxl-2014/7 (Sheldrick 2015a, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
0 restraintsExtinction coefficient: 0.0055 (12)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65557 (10)0.7811 (2)0.39735 (6)0.0587 (4)
O20.51051 (14)0.9560 (3)0.40696 (9)0.0926 (7)
O30.75329 (9)0.4593 (2)0.55237 (6)0.0586 (4)
C10.73395 (13)0.6282 (3)0.43863 (9)0.0466 (5)
C20.58293 (15)0.8307 (3)0.43300 (11)0.0616 (7)
C30.60803 (14)0.7127 (3)0.49933 (10)0.0572 (6)
C40.69565 (13)0.5954 (3)0.50349 (9)0.0483 (5)
C50.84009 (14)0.7456 (4)0.45714 (10)0.0615 (7)
C60.8889 (2)0.7882 (5)0.39683 (17)0.0958 (11)
C70.9329 (2)0.5925 (6)0.36911 (17)0.1085 (13)
C80.8603 (3)0.4293 (5)0.32391 (18)0.1036 (12)
C90.7490 (2)0.4241 (5)0.32610 (13)0.0845 (9)
C100.72762 (17)0.4081 (3)0.39760 (11)0.0616 (7)
C110.71428 (15)0.4155 (4)0.61342 (10)0.0626 (7)
C120.79198 (13)0.2632 (3)0.66139 (9)0.0481 (5)
C130.81346 (15)0.0543 (3)0.63809 (10)0.0573 (6)
C140.88756 (17)0.0856 (3)0.68052 (12)0.0673 (7)
C150.94012 (16)0.0186 (4)0.74684 (12)0.0668 (7)
C160.91935 (16)0.1878 (4)0.77136 (10)0.0647 (7)
C170.84535 (15)0.3281 (3)0.72885 (9)0.0555 (6)
H30.570200.717500.532900.0690*
H5A0.889200.656200.492500.0740*
H5B0.832400.889200.478600.0740*
H6A0.835500.855300.358200.1150*
H6B0.944800.898100.412500.1150*
H7A0.976300.510500.409200.1300*
H7B0.979600.648500.342400.1300*
H8A0.889500.280200.336100.1240*
H8B0.860700.457400.275400.1240*
H9A0.715100.297100.298100.1010*
H9B0.714900.559100.303100.1010*
H10A0.777700.303100.426300.0740*
H10B0.657700.345200.391100.0740*
H11A0.645400.344400.598900.0750*
H11B0.707800.555000.637400.0750*
H130.777300.007100.592900.0690*
H140.901600.225400.663900.0810*
H150.990200.112600.775600.0800*
H160.955300.233100.816800.0780*
H170.831400.467400.745800.0670*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0626 (8)0.0623 (8)0.0523 (7)0.0119 (6)0.0175 (6)0.0119 (6)
O20.0841 (11)0.1050 (13)0.0885 (11)0.0474 (10)0.0234 (9)0.0288 (10)
O30.0541 (7)0.0765 (9)0.0513 (7)0.0182 (6)0.0248 (6)0.0183 (6)
C10.0483 (9)0.0480 (10)0.0446 (9)0.0035 (7)0.0146 (7)0.0037 (7)
C20.0574 (11)0.0630 (12)0.0641 (12)0.0134 (10)0.0159 (9)0.0070 (10)
C30.0516 (10)0.0673 (13)0.0567 (10)0.0096 (9)0.0215 (8)0.0037 (9)
C40.0460 (9)0.0526 (10)0.0478 (9)0.0035 (7)0.0154 (7)0.0037 (8)
C50.0572 (11)0.0668 (12)0.0639 (11)0.0080 (9)0.0223 (9)0.0029 (10)
C60.0947 (18)0.0952 (19)0.112 (2)0.0267 (15)0.0528 (16)0.0020 (16)
C70.0777 (16)0.158 (3)0.108 (2)0.0046 (18)0.0564 (16)0.013 (2)
C80.113 (2)0.102 (2)0.120 (2)0.0209 (18)0.0730 (19)0.0032 (18)
C90.0960 (17)0.0951 (17)0.0661 (14)0.0017 (14)0.0285 (12)0.0249 (12)
C100.0660 (12)0.0567 (12)0.0653 (12)0.0034 (9)0.0233 (9)0.0069 (9)
C110.0586 (11)0.0801 (14)0.0582 (11)0.0134 (10)0.0316 (9)0.0172 (10)
C120.0488 (9)0.0545 (10)0.0464 (9)0.0010 (8)0.0223 (7)0.0063 (8)
C130.0629 (11)0.0596 (12)0.0493 (10)0.0065 (9)0.0152 (8)0.0085 (9)
C140.0763 (13)0.0526 (11)0.0777 (14)0.0053 (10)0.0291 (11)0.0011 (10)
C150.0568 (11)0.0761 (14)0.0664 (13)0.0054 (10)0.0150 (10)0.0205 (11)
C160.0640 (12)0.0853 (15)0.0430 (9)0.0158 (11)0.0115 (8)0.0021 (10)
C170.0721 (12)0.0531 (10)0.0494 (10)0.0067 (9)0.0303 (9)0.0041 (8)
Geometric parameters (Å, º) top
O1—C11.448 (2)C16—C171.379 (3)
O1—C21.363 (2)C3—H30.9300
O2—C21.209 (3)C5—H5A0.9700
O3—C41.326 (2)C5—H5B0.9700
O3—C111.452 (2)C6—H6A0.9700
C1—C41.507 (2)C6—H6B0.9700
C1—C51.515 (3)C7—H7A0.9700
C1—C101.528 (3)C7—H7B0.9700
C2—C31.439 (3)C8—H8A0.9700
C3—C41.331 (3)C8—H8B0.9700
C5—C61.516 (4)C9—H9A0.9700
C6—C71.469 (4)C9—H9B0.9700
C7—C81.478 (5)C10—H10A0.9700
C8—C91.478 (5)C10—H10B0.9700
C9—C101.511 (3)C11—H11A0.9700
C11—C121.494 (3)C11—H11B0.9700
C12—C131.380 (3)C13—H130.9300
C12—C171.377 (2)C14—H140.9300
C13—C141.378 (3)C15—H150.9300
C14—C151.360 (3)C16—H160.9300
C15—C161.373 (3)C17—H170.9300
C1—O1—C2109.88 (13)C7—C6—H6A108.00
C4—O3—C11116.60 (14)C7—C6—H6B108.00
O1—C1—C4101.81 (14)H6A—C6—H6B107.00
O1—C1—C5108.41 (15)C6—C7—H7A108.00
O1—C1—C10108.26 (14)C6—C7—H7B108.00
C4—C1—C5110.81 (15)C8—C7—H7A108.00
C4—C1—C10110.72 (15)C8—C7—H7B108.00
C5—C1—C10115.84 (16)H7A—C7—H7B107.00
O1—C2—O2119.88 (19)C7—C8—H8A108.00
O1—C2—C3109.93 (16)C7—C8—H8B108.00
O2—C2—C3130.2 (2)C9—C8—H8A108.00
C2—C3—C4107.02 (17)C9—C8—H8B108.00
O3—C4—C1115.83 (15)H8A—C8—H8B107.00
O3—C4—C3132.82 (17)C8—C9—H9A108.00
C1—C4—C3111.35 (16)C8—C9—H9B108.00
C1—C5—C6116.63 (18)C10—C9—H9A108.00
C5—C6—C7116.9 (3)C10—C9—H9B108.00
C6—C7—C8119.2 (3)H9A—C9—H9B107.00
C7—C8—C9118.7 (3)C1—C10—H10A108.00
C8—C9—C10117.8 (2)C1—C10—H10B108.00
C1—C10—C9116.15 (18)C9—C10—H10A108.00
O3—C11—C12107.20 (15)C9—C10—H10B108.00
C11—C12—C13120.19 (16)H10A—C10—H10B107.00
C11—C12—C17121.41 (17)O3—C11—H11A110.00
C13—C12—C17118.39 (17)O3—C11—H11B110.00
C12—C13—C14121.18 (18)C12—C11—H11A110.00
C13—C14—C15119.76 (19)C12—C11—H11B110.00
C14—C15—C16120.1 (2)H11A—C11—H11B108.00
C15—C16—C17120.20 (18)C12—C13—H13119.00
C12—C17—C16120.41 (17)C14—C13—H13119.00
C2—C3—H3126.00C13—C14—H14120.00
C4—C3—H3127.00C15—C14—H14120.00
C1—C5—H5A108.00C14—C15—H15120.00
C1—C5—H5B108.00C16—C15—H15120.00
C6—C5—H5A108.00C15—C16—H16120.00
C6—C5—H5B108.00C17—C16—H16120.00
H5A—C5—H5B107.00C12—C17—H17120.00
C5—C6—H6A108.00C16—C17—H17120.00
C5—C6—H6B108.00
C2—O1—C1—C40.28 (18)O1—C2—C3—C40.6 (2)
C2—O1—C1—C5116.60 (16)O2—C2—C3—C4179.7 (2)
C2—O1—C1—C10117.00 (16)C2—C3—C4—O3179.77 (19)
C1—O1—C2—O2179.77 (18)C2—C3—C4—C10.4 (2)
C1—O1—C2—C30.6 (2)C1—C5—C6—C773.6 (3)
C11—O3—C4—C1176.58 (15)C5—C6—C7—C875.0 (4)
C11—O3—C4—C33.2 (3)C6—C7—C8—C919.3 (4)
C4—O3—C11—C12179.01 (15)C7—C8—C9—C1051.0 (4)
O1—C1—C4—O3179.95 (15)C8—C9—C10—C181.3 (3)
O1—C1—C4—C30.11 (19)O3—C11—C12—C1360.0 (2)
C5—C1—C4—O364.9 (2)O3—C11—C12—C17118.58 (19)
C5—C1—C4—C3115.24 (18)C11—C12—C13—C14177.65 (19)
C10—C1—C4—O365.0 (2)C17—C12—C13—C141.0 (3)
C10—C1—C4—C3114.81 (18)C11—C12—C17—C16177.78 (19)
O1—C1—C5—C669.6 (2)C13—C12—C17—C160.9 (3)
C4—C1—C5—C6179.51 (19)C12—C13—C14—C150.6 (3)
C10—C1—C5—C652.3 (3)C13—C14—C15—C160.0 (3)
O1—C1—C10—C960.9 (2)C14—C15—C16—C170.1 (3)
C4—C1—C10—C9171.67 (18)C15—C16—C17—C120.3 (3)
C5—C1—C10—C961.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
C9—H9B···O10.972.562.987 (3)106
C16—H16···O2i0.932.533.362 (3)149
C7—H7B···Cg2ii0.972.803.750 (3)165
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors acknowledge the support of the Vicerrectoría de Investigación y Extensión, Universidad Industrial de Santander (UIS) and the Parque Tecnológico Guatiguará, UIS, Piedecuesta, Santander, Colombia, Laboratorio de Difracción de Rayos-X, for recording X-ray diffraction data.

References

First citationAlcock, N. W. (1974). Acta Cryst. A30, 332–335.  CrossRef IUCr Journals Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationICDD (2012). PDF-4/Organics 2012 (Database), edited by S. Kabekkodu, International Centre for Diffraction Data, Newtown Square, PA, USA.  Google Scholar
First citationRigaku (2015). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchobert, R. (2007). Naturwissenschaften, 94, 1–11.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchobert, R. & Schlenk, A. (2008). Bioorg. Med. Chem. 16, 4203–4221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchobert, R., Siegfried, S., Weingärtner, J. & Nieuwenhuyzen, M. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 2009–2011.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTejedor, D. & García-Tellado, F. (2004). Org. Prep. Proced. Int. 36, 33–59.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds