organic compounds
2,5-Bis[(dimethylamino)methyl]-1H-pyrrole
aScientific Instrument Center, Shanxi University, Taiyuan, 030006, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, People's Republic of China
*Correspondence e-mail: gzq@sxu.edu.cn
The 10H19N3, which are linked into dimers by two Npyrrole—H⋯Namine hydrogen bonds.
contains two independent molecules, CKeywords: crystal structure; pyrrole; hydrogen bond.
CCDC reference: 1509431
Structure description
Over the past few years, pincer ligands with three nitrogen donor functions {NNN} have played an increasingly important role in coordination chemistry. Due to their high thermal stability, unusual reactivity and high degree of flexibility concerning steric and electronic properties, they have been synthesized for making metal complexes to study catalysis of organic transformation reactions and used in inorganic coordination chemistry (Guo et al., 2015). Among them, the monoanionic tridentate pyrrolyl ligand containing saturated methylene moieties, 2,5-bis[(dimethylamino)methylene]-1H-pyrrole, is a representative example. It is in a liquid state at room temperature. Many organometallic compounds formed by this auxiliary ligand with aluminium (Liu et al., 2013) and zinc (Hsiao et al., 2012) or transition metals including Ti (Li et al., 2005), Zr (Hsu et al., 2012), Hf (Lee et al., 2011), Ga (Wang et al., 2013), In (Kuo et al., 2003), Y (Kuo et al., 2005) and Mo (Huang et al., 2001) have been reported and there are several reports of the crystal structures of organometallic compounds containing 2,5-bis[(dimethylamino)methylene]-1H-pyrrole as a ligand (Xia et al., 2002; Lee et al., 2011; Chang et al., 2011; Wang et al., 2012). However, although 2,5-bis[(dimethylamino)methylene]-1H-pyrrole has been prepared and studied for a long time, its has not been reported so far. As a part of our studies on organometallic complexes incorporating substituted symmetrical tridentate pyrrolyl ligands and their application, we have determined its structure.
The . The two independent molecules are linked into dimers by Npyrrole—H⋯Namine hydrogen bonds (Table 1, Fig. 2).
of the title compound is shown in Fig. 1
|
Synthesis and crystallization
The title compound was prepared following a modified literature procedure (Herz et al., 1947). A 250 ml flask was charged with formaldehyde (37%, 14.0 ml, 0.2 mol) and dimethylamine hydrochloride (16.3 g, 0.2 mol) and cooled to 273 K in an ice bath for 30 minutes with stirring. To the stirred solution, pyrrole (6.7 g, 0.1 mol) was added dropwise and the combined solution was warmed to room temperature and stirred for 24 h. The brown solution was neutralized with 30 ml aqueous sodium hydroxide (8 g, 0.2 mol) solution. The organic layer was separated, and the aqueous layer was extracted with 50 ml diethyl ether in three portions. The combined organic portion was dried over anhydrous MgSO4 and filtered, and the solvent was removed under reduced pressure. The resultant residue was distilled under vacuum, yielding a colorless liquid (14.71 g, 78%). Crystals suitable for X-ray were obtained from diethyl ether at 278 K. 1H NMR (300 MHz, CDCl3): 2.22 (s, 12H, NMe2), 3.39 (s, 4H, CH2NMe2), 5.92 (s, 2H, pyrrolyl CH), 8.7 (br, 1H, pyrrolyl NH).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1509431
https://doi.org/10.1107/S2414314616016175/lh5824sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616016175/lh5824Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616016175/lh5824Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).C10H19N3 | F(000) = 800 |
Mr = 181.28 | Dx = 1.036 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 9945 reflections |
a = 9.8203 (4) Å | θ = 2.9–28.3° |
b = 10.6193 (4) Å | µ = 0.06 mm−1 |
c = 22.5202 (9) Å | T = 200 K |
β = 98.098 (1)° | Block, colorless |
V = 2325.09 (16) Å3 | 0.25 × 0.20 × 0.20 mm |
Z = 8 |
Bruker APEXII CCD diffractometer | 4102 independent reflections |
Radiation source: fine-focus sealed tube | 3463 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
φ and ω scans | θmax = 25.0°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −11→9 |
Tmin = 0.984, Tmax = 0.987 | k = −12→12 |
16645 measured reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.120 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.055P)2 + 0.774P] where P = (Fo2 + 2Fc2)/3 |
4102 reflections | (Δ/σ)max < 0.001 |
251 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.51916 (12) | 0.27259 (11) | 0.49505 (5) | 0.0330 (3) | |
N2 | 0.46921 (11) | 0.18139 (10) | 0.35956 (5) | 0.0329 (3) | |
N3 | 0.66223 (13) | 0.33577 (11) | 0.62140 (5) | 0.0406 (3) | |
N4 | 0.73647 (12) | 0.30961 (11) | 0.34942 (5) | 0.0349 (3) | |
N5 | 0.57265 (13) | 0.37168 (13) | 0.22458 (5) | 0.0462 (3) | |
N6 | 0.81107 (12) | 0.21866 (12) | 0.48359 (5) | 0.0380 (3) | |
C1 | 0.41230 (14) | 0.20883 (14) | 0.46275 (6) | 0.0373 (3) | |
C2 | 0.29505 (15) | 0.24217 (17) | 0.48545 (7) | 0.0490 (4) | |
H2 | 0.2046 | 0.2133 | 0.4716 | 0.059* | |
C3 | 0.33301 (15) | 0.32738 (17) | 0.53326 (7) | 0.0485 (4) | |
H3 | 0.2727 | 0.3657 | 0.5574 | 0.058* | |
C4 | 0.47210 (14) | 0.34452 (14) | 0.53839 (6) | 0.0372 (3) | |
C5 | 0.56728 (15) | 0.41779 (14) | 0.58293 (6) | 0.0396 (3) | |
H5A | 0.6209 | 0.4771 | 0.5614 | 0.047* | |
H5B | 0.5128 | 0.4679 | 0.6082 | 0.047* | |
C6 | 0.5889 (2) | 0.25212 (16) | 0.65700 (8) | 0.0590 (5) | |
H6A | 0.6549 | 0.1973 | 0.6814 | 0.088* | |
H6B | 0.5240 | 0.2005 | 0.6303 | 0.088* | |
H6C | 0.5385 | 0.3022 | 0.6833 | 0.088* | |
C7 | 0.76343 (19) | 0.40912 (16) | 0.66004 (7) | 0.0552 (4) | |
H7A | 0.7171 | 0.4591 | 0.6879 | 0.083* | |
H7B | 0.8115 | 0.4655 | 0.6355 | 0.083* | |
H7C | 0.8300 | 0.3523 | 0.6829 | 0.083* | |
C8 | 0.43384 (16) | 0.11967 (14) | 0.41380 (6) | 0.0393 (3) | |
H8A | 0.5085 | 0.0605 | 0.4291 | 0.047* | |
H8B | 0.3489 | 0.0697 | 0.4029 | 0.047* | |
C9 | 0.50189 (17) | 0.08705 (14) | 0.31653 (7) | 0.0451 (4) | |
H9A | 0.4207 | 0.0348 | 0.3040 | 0.068* | |
H9B | 0.5774 | 0.0338 | 0.3353 | 0.068* | |
H9C | 0.5295 | 0.1293 | 0.2814 | 0.068* | |
C10 | 0.35561 (16) | 0.25880 (15) | 0.33159 (7) | 0.0439 (4) | |
H10A | 0.3820 | 0.3005 | 0.2961 | 0.066* | |
H10B | 0.3334 | 0.3225 | 0.3602 | 0.066* | |
H10C | 0.2750 | 0.2055 | 0.3196 | 0.066* | |
C11 | 0.85627 (14) | 0.26252 (15) | 0.37998 (6) | 0.0404 (4) | |
C12 | 0.96231 (16) | 0.3169 (2) | 0.35660 (8) | 0.0666 (6) | |
H12 | 1.0575 | 0.3025 | 0.3692 | 0.080* | |
C13 | 0.90529 (18) | 0.3985 (2) | 0.31040 (8) | 0.0707 (6) | |
H13 | 0.9554 | 0.4485 | 0.2860 | 0.085* | |
C14 | 0.76571 (16) | 0.39331 (15) | 0.30672 (7) | 0.0458 (4) | |
C15 | 0.65633 (17) | 0.45768 (16) | 0.26511 (7) | 0.0476 (4) | |
H15A | 0.5956 | 0.5042 | 0.2890 | 0.057* | |
H15B | 0.6998 | 0.5200 | 0.2410 | 0.057* | |
C16 | 0.6545 (2) | 0.3079 (2) | 0.18498 (9) | 0.0700 (5) | |
H16A | 0.6931 | 0.3700 | 0.1599 | 0.105* | |
H16B | 0.5962 | 0.2488 | 0.1594 | 0.105* | |
H16C | 0.7293 | 0.2617 | 0.2089 | 0.105* | |
C17 | 0.46052 (19) | 0.4411 (2) | 0.18979 (8) | 0.0663 (5) | |
H17A | 0.4985 | 0.5057 | 0.1657 | 0.099* | |
H17B | 0.4043 | 0.4814 | 0.2171 | 0.099* | |
H17C | 0.4034 | 0.3829 | 0.1632 | 0.099* | |
C18 | 0.85787 (15) | 0.16923 (14) | 0.42902 (6) | 0.0393 (3) | |
H18A | 0.7985 | 0.0973 | 0.4142 | 0.047* | |
H18B | 0.9528 | 0.1369 | 0.4395 | 0.047* | |
C19 | 0.8157 (2) | 0.11775 (19) | 0.52785 (8) | 0.0661 (6) | |
H19A | 0.9108 | 0.0889 | 0.5385 | 0.099* | |
H19B | 0.7583 | 0.0474 | 0.5109 | 0.099* | |
H19C | 0.7811 | 0.1492 | 0.5638 | 0.099* | |
C20 | 0.89513 (18) | 0.3249 (2) | 0.50799 (8) | 0.0625 (5) | |
H20A | 0.8625 | 0.3548 | 0.5447 | 0.094* | |
H20B | 0.8881 | 0.3931 | 0.4784 | 0.094* | |
H20C | 0.9913 | 0.2981 | 0.5173 | 0.094* | |
H20 | 0.6493 (17) | 0.2851 (14) | 0.3558 (7) | 0.043 (4)* | |
H21 | 0.6060 (17) | 0.2653 (14) | 0.4890 (7) | 0.041 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0285 (6) | 0.0417 (7) | 0.0296 (6) | −0.0026 (5) | 0.0065 (5) | −0.0023 (5) |
N2 | 0.0341 (6) | 0.0344 (6) | 0.0313 (6) | −0.0056 (5) | 0.0089 (5) | −0.0064 (5) |
N3 | 0.0475 (7) | 0.0375 (6) | 0.0351 (6) | 0.0031 (5) | −0.0001 (5) | −0.0050 (5) |
N4 | 0.0295 (6) | 0.0445 (7) | 0.0308 (6) | −0.0035 (5) | 0.0047 (5) | 0.0056 (5) |
N5 | 0.0467 (7) | 0.0568 (8) | 0.0343 (7) | −0.0057 (6) | 0.0025 (5) | 0.0107 (6) |
N6 | 0.0340 (6) | 0.0474 (7) | 0.0332 (6) | 0.0068 (5) | 0.0077 (5) | 0.0083 (5) |
C1 | 0.0342 (7) | 0.0474 (8) | 0.0307 (7) | −0.0086 (6) | 0.0063 (6) | −0.0022 (6) |
C2 | 0.0313 (7) | 0.0744 (11) | 0.0421 (8) | −0.0096 (7) | 0.0081 (6) | −0.0073 (8) |
C3 | 0.0383 (8) | 0.0698 (11) | 0.0399 (8) | 0.0049 (8) | 0.0137 (6) | −0.0077 (8) |
C4 | 0.0403 (8) | 0.0431 (8) | 0.0288 (7) | 0.0023 (6) | 0.0072 (6) | −0.0020 (6) |
C5 | 0.0484 (8) | 0.0382 (8) | 0.0316 (7) | 0.0022 (6) | 0.0038 (6) | −0.0024 (6) |
C6 | 0.0730 (12) | 0.0494 (10) | 0.0539 (10) | 0.0039 (9) | 0.0066 (9) | 0.0128 (8) |
C7 | 0.0630 (11) | 0.0518 (10) | 0.0453 (9) | 0.0061 (8) | −0.0117 (8) | −0.0119 (8) |
C8 | 0.0445 (8) | 0.0400 (8) | 0.0342 (7) | −0.0105 (6) | 0.0080 (6) | −0.0033 (6) |
C9 | 0.0548 (9) | 0.0420 (8) | 0.0406 (8) | −0.0034 (7) | 0.0141 (7) | −0.0112 (7) |
C10 | 0.0435 (8) | 0.0469 (8) | 0.0410 (8) | 0.0006 (7) | 0.0053 (7) | −0.0030 (7) |
C11 | 0.0307 (7) | 0.0562 (9) | 0.0345 (7) | −0.0002 (6) | 0.0057 (6) | 0.0080 (7) |
C12 | 0.0313 (8) | 0.1101 (16) | 0.0584 (11) | −0.0065 (9) | 0.0062 (7) | 0.0342 (11) |
C13 | 0.0435 (9) | 0.1081 (16) | 0.0603 (11) | −0.0204 (10) | 0.0060 (8) | 0.0423 (11) |
C14 | 0.0438 (8) | 0.0559 (9) | 0.0367 (8) | −0.0095 (7) | 0.0025 (6) | 0.0136 (7) |
C15 | 0.0535 (9) | 0.0504 (9) | 0.0375 (8) | −0.0030 (7) | 0.0015 (7) | 0.0110 (7) |
C16 | 0.0836 (14) | 0.0752 (13) | 0.0530 (11) | −0.0044 (11) | 0.0158 (10) | −0.0043 (10) |
C17 | 0.0569 (10) | 0.0914 (14) | 0.0467 (10) | −0.0045 (10) | −0.0065 (8) | 0.0234 (10) |
C18 | 0.0353 (7) | 0.0477 (8) | 0.0357 (7) | 0.0070 (6) | 0.0077 (6) | 0.0066 (6) |
C19 | 0.0795 (13) | 0.0785 (13) | 0.0444 (9) | 0.0340 (11) | 0.0229 (9) | 0.0284 (9) |
C20 | 0.0444 (9) | 0.0851 (13) | 0.0582 (11) | −0.0051 (9) | 0.0077 (8) | −0.0207 (10) |
N1—C1 | 1.3689 (17) | C7—H7C | 0.9800 |
N1—C4 | 1.3700 (17) | C8—H8A | 0.9900 |
N1—H21 | 0.886 (17) | C8—H8B | 0.9900 |
N2—C10 | 1.4557 (18) | C9—H9A | 0.9800 |
N2—C9 | 1.4605 (17) | C9—H9B | 0.9800 |
N2—C8 | 1.4704 (17) | C9—H9C | 0.9800 |
N3—C7 | 1.4519 (19) | C10—H10A | 0.9800 |
N3—C6 | 1.453 (2) | C10—H10B | 0.9800 |
N3—C5 | 1.4666 (18) | C10—H10C | 0.9800 |
N4—C11 | 1.3710 (18) | C11—C12 | 1.360 (2) |
N4—C14 | 1.3693 (18) | C11—C18 | 1.4820 (19) |
N4—H20 | 0.926 (16) | C12—C13 | 1.408 (2) |
N5—C16 | 1.450 (2) | C12—H12 | 0.9500 |
N5—C15 | 1.460 (2) | C13—C14 | 1.363 (2) |
N5—C17 | 1.458 (2) | C13—H13 | 0.9500 |
N6—C19 | 1.4599 (19) | C14—C15 | 1.489 (2) |
N6—C20 | 1.459 (2) | C15—H15A | 0.9900 |
N6—C18 | 1.4683 (17) | C15—H15B | 0.9900 |
C1—C2 | 1.370 (2) | C16—H16A | 0.9800 |
C1—C8 | 1.4906 (19) | C16—H16B | 0.9800 |
C2—C3 | 1.416 (2) | C16—H16C | 0.9800 |
C2—H2 | 0.9500 | C17—H17A | 0.9800 |
C3—C4 | 1.367 (2) | C17—H17B | 0.9800 |
C3—H3 | 0.9500 | C17—H17C | 0.9800 |
C4—C5 | 1.4903 (19) | C18—H18A | 0.9900 |
C5—H5A | 0.9900 | C18—H18B | 0.9900 |
C5—H5B | 0.9900 | C19—H19A | 0.9800 |
C6—H6A | 0.9800 | C19—H19B | 0.9800 |
C6—H6B | 0.9800 | C19—H19C | 0.9800 |
C6—H6C | 0.9800 | C20—H20A | 0.9800 |
C7—H7A | 0.9800 | C20—H20B | 0.9800 |
C7—H7B | 0.9800 | C20—H20C | 0.9800 |
C1—N1—C4 | 110.12 (12) | N2—C9—H9C | 109.5 |
C1—N1—H21 | 123.9 (10) | H9A—C9—H9C | 109.5 |
C4—N1—H21 | 126.0 (10) | H9B—C9—H9C | 109.5 |
C10—N2—C9 | 109.09 (11) | N2—C10—H10A | 109.5 |
C10—N2—C8 | 110.78 (11) | N2—C10—H10B | 109.5 |
C9—N2—C8 | 110.19 (11) | H10A—C10—H10B | 109.5 |
C7—N3—C6 | 110.34 (13) | N2—C10—H10C | 109.5 |
C7—N3—C5 | 111.10 (12) | H10A—C10—H10C | 109.5 |
C6—N3—C5 | 111.45 (13) | H10B—C10—H10C | 109.5 |
C11—N4—C14 | 109.83 (12) | C12—C11—N4 | 107.49 (13) |
C11—N4—H20 | 124.5 (10) | C12—C11—C18 | 130.10 (14) |
C14—N4—H20 | 125.6 (10) | N4—C11—C18 | 122.42 (12) |
C16—N5—C15 | 111.41 (14) | C11—C12—C13 | 107.51 (14) |
C16—N5—C17 | 110.36 (14) | C11—C12—H12 | 126.2 |
C15—N5—C17 | 109.61 (14) | C13—C12—H12 | 126.2 |
C19—N6—C20 | 110.40 (14) | C14—C13—C12 | 108.17 (14) |
C19—N6—C18 | 109.01 (12) | C14—C13—H13 | 125.9 |
C20—N6—C18 | 111.38 (12) | C12—C13—H13 | 125.9 |
C2—C1—N1 | 107.18 (13) | C13—C14—N4 | 106.99 (13) |
C2—C1—C8 | 130.86 (13) | C13—C14—C15 | 130.55 (14) |
N1—C1—C8 | 121.94 (12) | N4—C14—C15 | 122.42 (13) |
C1—C2—C3 | 107.69 (13) | N5—C15—C14 | 113.52 (13) |
C1—C2—H2 | 126.2 | N5—C15—H15A | 108.9 |
C3—C2—H2 | 126.2 | C14—C15—H15A | 108.9 |
C4—C3—C2 | 107.60 (13) | N5—C15—H15B | 108.9 |
C4—C3—H3 | 126.2 | C14—C15—H15B | 108.9 |
C2—C3—H3 | 126.2 | H15A—C15—H15B | 107.7 |
C3—C4—N1 | 107.40 (13) | N5—C16—H16A | 109.5 |
C3—C4—C5 | 130.62 (13) | N5—C16—H16B | 109.5 |
N1—C4—C5 | 121.87 (12) | H16A—C16—H16B | 109.5 |
N3—C5—C4 | 111.95 (12) | N5—C16—H16C | 109.5 |
N3—C5—H5A | 109.2 | H16A—C16—H16C | 109.5 |
C4—C5—H5A | 109.2 | H16B—C16—H16C | 109.5 |
N3—C5—H5B | 109.2 | N5—C17—H17A | 109.5 |
C4—C5—H5B | 109.2 | N5—C17—H17B | 109.5 |
H5A—C5—H5B | 107.9 | H17A—C17—H17B | 109.5 |
N3—C6—H6A | 109.5 | N5—C17—H17C | 109.5 |
N3—C6—H6B | 109.5 | H17A—C17—H17C | 109.5 |
H6A—C6—H6B | 109.5 | H17B—C17—H17C | 109.5 |
N3—C6—H6C | 109.5 | N6—C18—C11 | 114.39 (12) |
H6A—C6—H6C | 109.5 | N6—C18—H18A | 108.7 |
H6B—C6—H6C | 109.5 | C11—C18—H18A | 108.7 |
N3—C7—H7A | 109.5 | N6—C18—H18B | 108.7 |
N3—C7—H7B | 109.5 | C11—C18—H18B | 108.7 |
H7A—C7—H7B | 109.5 | H18A—C18—H18B | 107.6 |
N3—C7—H7C | 109.5 | N6—C19—H19A | 109.5 |
H7A—C7—H7C | 109.5 | N6—C19—H19B | 109.5 |
H7B—C7—H7C | 109.5 | H19A—C19—H19B | 109.5 |
N2—C8—C1 | 113.95 (11) | N6—C19—H19C | 109.5 |
N2—C8—H8A | 108.8 | H19A—C19—H19C | 109.5 |
C1—C8—H8A | 108.8 | H19B—C19—H19C | 109.5 |
N2—C8—H8B | 108.8 | N6—C20—H20A | 109.5 |
C1—C8—H8B | 108.8 | N6—C20—H20B | 109.5 |
H8A—C8—H8B | 107.7 | H20A—C20—H20B | 109.5 |
N2—C9—H9A | 109.5 | N6—C20—H20C | 109.5 |
N2—C9—H9B | 109.5 | H20A—C20—H20C | 109.5 |
H9A—C9—H9B | 109.5 | H20B—C20—H20C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H21···N6 | 0.886 (17) | 2.094 (17) | 2.9699 (16) | 169.8 (14) |
N4—H20···N2 | 0.926 (16) | 2.095 (17) | 2.9939 (16) | 163.5 (14) |
Acknowledgements
Financial support from Students Research Training of Shanxi University is gratefully acknowledged.
References
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chang, J.-C., Chen, Y.-C., Datta, A., Lin, C.-H., Hsiao, C.-S. & Huang, J.-H. (2011). J. Organomet. Chem. 696, 3673–3680. CrossRef CAS Google Scholar
Guo, Z., Wei, X., Tong, H. & Liu, D. (2015). J. Organomet. Chem. 776, 136–142. CrossRef CAS Google Scholar
Herz, W., Dittmer, K. & Cristol, S.-J. (1947). J. Am. Chem. Soc. 69, 1698–1700. CrossRef CAS Google Scholar
Hsiao, C.-S., Wang, T.-Y., Datta, A., Liao, F.-X., Hu, C.-H., Lin, C.-H., Huang, J.-H. & Lee, T.-Y. (2012). J. Organomet. Chem. 718, 82–88. CrossRef CAS Google Scholar
Hsu, J.-W., Lin, Y.-C., Hsiao, C.-S., Datta, A., Lin, C.-H., Huang, J.-H., Tsai, J.-C. & Hsu, W.-C. (2012). Dalton Trans. 41, 7700–7707. CrossRef CAS PubMed Google Scholar
Huang, J.-H., Chen, H.-J., Hsieh, C.-C., Lee, G.-H. & Peng, S.-M. (2001). Inorg. Chim. Acta, 321, 142–148. CrossRef CAS Google Scholar
Kuo, P.-C., Chang, J.-C., Lee, W.-Y., Lee, H.-M. & Huang, J.-H. (2005). J. Organomet. Chem. 690, 4168–4174. CrossRef CAS Google Scholar
Kuo, P.-C., Huang, J.-H., Hung, C.-H., Lee, G.-H. & Peng, S.-M. (2003). Eur. J. Inorg. Chem. pp. 1440–1444. CrossRef Google Scholar
Lee, W.-Y., Hsieh, C.-C., Hsu, J.-W., Datta, A., Lin, Y.-C., Huang, J.-H. & Lee, T.-Y. (2011). J. Organomet. Chem. 696, 3816–3821. CrossRef CAS Google Scholar
Li, Y.-H., Banerjee, S. & Odom, A. L. (2005). Organometallics, 24, 3272–3278. CrossRef CAS Google Scholar
Liu, P.-H., Chuang, F.-J., Tu, C.-Y., Hu, C.-H., Lin, T.-W., Wang, Y.-T., Lin, C.-H., Datta, A. & Huang, J. H. (2013). Dalton Trans. 42, 13754–13764. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Y.-T., Lin, Y.-C., Hsu, S.-Y., Chen, R.-Y., Liu, P.-H., Datta, A., Lin, C.-H. & Huang, J.-H. (2013). J. Organomet. Chem. 745–746, 12–17. CrossRef CAS Google Scholar
Wang, L.-F., Liu, D.-Y. & Cui, D.-M. (2012). Organometallics, 31, 6014–6021. CrossRef CAS Google Scholar
Xia, A.-B., Heeg, M.-J. & Winter, C. H. (2002). Organometallics, 21, 4718–4725. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.