organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,5-Bis[(di­methyl­amino)­methyl]-1H-pyrrole

CROSSMARK_Color_square_no_text.svg

aScientific Instrument Center, Shanxi University, Taiyuan, 030006, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, People's Republic of China
*Correspondence e-mail: gzq@sxu.edu.cn

Edited by A. J. Lough, University of Toronto, Canada (Received 6 September 2016; accepted 12 October 2016; online 18 October 2016)

The asymmetric unit contains two independent mol­ecules, C10H19N3, which are linked into dimers by two Npyrrole—H⋯Namine hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Over the past few years, pincer ligands with three nitro­gen donor functions {NNN} have played an increasingly important role in coordination chemistry. Due to their high thermal stability, unusual reactivity and high degree of flexibility concerning steric and electronic properties, they have been synthesized for making metal complexes to study catalysis of organic transformation reactions and used in inorganic coordination chemistry (Guo et al., 2015[Guo, Z., Wei, X., Tong, H. & Liu, D. (2015). J. Organomet. Chem. 776, 136-142.]). Among them, the monoanionic tridentate pyrrolyl ligand containing saturated methyl­ene moieties, 2,5-bis­[(di­methyl­amino)­methyl­ene]-1H-pyrrole, is a representative example. It is in a liquid state at room temperature. Many organometallic compounds formed by this auxiliary ligand with aluminium (Liu et al., 2013[Liu, P.-H., Chuang, F.-J., Tu, C.-Y., Hu, C.-H., Lin, T.-W., Wang, Y.-T., Lin, C.-H., Datta, A. & Huang, J. H. (2013). Dalton Trans. 42, 13754-13764.]) and zinc (Hsiao et al., 2012[Hsiao, C.-S., Wang, T.-Y., Datta, A., Liao, F.-X., Hu, C.-H., Lin, C.-H., Huang, J.-H. & Lee, T.-Y. (2012). J. Organomet. Chem. 718, 82-88.]) or transition metals including Ti (Li et al., 2005[Li, Y.-H., Banerjee, S. & Odom, A. L. (2005). Organometallics, 24, 3272-3278.]), Zr (Hsu et al., 2012[Hsu, J.-W., Lin, Y.-C., Hsiao, C.-S., Datta, A., Lin, C.-H., Huang, J.-H., Tsai, J.-C. & Hsu, W.-C. (2012). Dalton Trans. 41, 7700-7707.]), Hf (Lee et al., 2011[Lee, W.-Y., Hsieh, C.-C., Hsu, J.-W., Datta, A., Lin, Y.-C., Huang, J.-H. & Lee, T.-Y. (2011). J. Organomet. Chem. 696, 3816-3821.]), Ga (Wang et al., 2013[Wang, Y.-T., Lin, Y.-C., Hsu, S.-Y., Chen, R.-Y., Liu, P.-H., Datta, A., Lin, C.-H. & Huang, J.-H. (2013). J. Organomet. Chem. 745-746, 12-17.]), In (Kuo et al., 2003[Kuo, P.-C., Huang, J.-H., Hung, C.-H., Lee, G.-H. & Peng, S.-M. (2003). Eur. J. Inorg. Chem. pp. 1440-1444.]), Y (Kuo et al., 2005[Kuo, P.-C., Chang, J.-C., Lee, W.-Y., Lee, H.-M. & Huang, J.-H. (2005). J. Organomet. Chem. 690, 4168-4174.]) and Mo (Huang et al., 2001[Huang, J.-H., Chen, H.-J., Hsieh, C.-C., Lee, G.-H. & Peng, S.-M. (2001). Inorg. Chim. Acta, 321, 142-148.]) have been reported and there are several reports of the crystal structures of organometallic compounds containing 2,5-bis­[(di­methyl­amino)­methyl­ene]-1H-pyrrole as a ligand (Xia et al., 2002[Xia, A.-B., Heeg, M.-J. & Winter, C. H. (2002). Organometallics, 21, 4718-4725.]; Lee et al., 2011[Lee, W.-Y., Hsieh, C.-C., Hsu, J.-W., Datta, A., Lin, Y.-C., Huang, J.-H. & Lee, T.-Y. (2011). J. Organomet. Chem. 696, 3816-3821.]; Chang et al., 2011[Chang, J.-C., Chen, Y.-C., Datta, A., Lin, C.-H., Hsiao, C.-S. & Huang, J.-H. (2011). J. Organomet. Chem. 696, 3673-3680.]; Wang et al., 2012[Wang, L.-F., Liu, D.-Y. & Cui, D.-M. (2012). Organometallics, 31, 6014-6021.]). However, although 2,5-bis­[(di­methyl­amino)­methyl­ene]-1H-pyrrole has been prepared and studied for a long time, its crystal structure has not been reported so far. As a part of our studies on organometallic complexes incorporating substituted symmetrical tridentate pyrrolyl ligands and their application, we have determined its structure.

The asymmetric unit of the title compound is shown in Fig. 1[link]. The two independent mol­ecules are linked into dimers by Npyrrole—H⋯Namine hydrogen bonds (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H21⋯N6 0.886 (17) 2.094 (17) 2.9699 (16) 169.8 (14)
N4—H20⋯N2 0.926 (16) 2.095 (17) 2.9939 (16) 163.5 (14)
[Figure 1]
Figure 1
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines. Only H atoms involved in hydrogen bonding are shown.

Synthesis and crystallization

The title compound was prepared following a modified literature procedure (Herz et al., 1947[Herz, W., Dittmer, K. & Cristol, S.-J. (1947). J. Am. Chem. Soc. 69, 1698-1700.]). A 250 ml flask was charged with formaldehyde (37%, 14.0 ml, 0.2 mol) and di­methyl­amine hydro­chloride (16.3 g, 0.2 mol) and cooled to 273 K in an ice bath for 30 minutes with stirring. To the stirred solution, pyrrole (6.7 g, 0.1 mol) was added dropwise and the combined solution was warmed to room temperature and stirred for 24 h. The brown solution was neutralized with 30 ml aqueous sodium hydroxide (8 g, 0.2 mol) solution. The organic layer was separated, and the aqueous layer was extracted with 50 ml diethyl ether in three portions. The combined organic portion was dried over anhydrous MgSO4 and filtered, and the solvent was removed under reduced pressure. The resultant residue was distilled under vacuum, yielding a colorless liquid (14.71 g, 78%). Crystals suitable for X-ray diffraction analysis were obtained from diethyl ether at 278 K. 1H NMR (300 MHz, CDCl3): 2.22 (s, 12H, NMe2), 3.39 (s, 4H, CH2NMe2), 5.92 (s, 2H, pyrrolyl CH), 8.7 (br, 1H, pyrrolyl NH).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H19N3
Mr 181.28
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 9.8203 (4), 10.6193 (4), 22.5202 (9)
β (°) 98.098 (1)
V3) 2325.09 (16)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.06
Crystal size (mm) 0.25 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.984, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 16645, 4102, 3463
Rint 0.031
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.120, 1.00
No. of reflections 4102
No. of parameters 251
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

2,5-Bis[(dimethylamino)methyl]-1H-pyrrole top
Crystal data top
C10H19N3F(000) = 800
Mr = 181.28Dx = 1.036 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9945 reflections
a = 9.8203 (4) Åθ = 2.9–28.3°
b = 10.6193 (4) ŵ = 0.06 mm1
c = 22.5202 (9) ÅT = 200 K
β = 98.098 (1)°Block, colorless
V = 2325.09 (16) Å30.25 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
4102 independent reflections
Radiation source: fine-focus sealed tube3463 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 119
Tmin = 0.984, Tmax = 0.987k = 1212
16645 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.055P)2 + 0.774P]
where P = (Fo2 + 2Fc2)/3
4102 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.51916 (12)0.27259 (11)0.49505 (5)0.0330 (3)
N20.46921 (11)0.18139 (10)0.35956 (5)0.0329 (3)
N30.66223 (13)0.33577 (11)0.62140 (5)0.0406 (3)
N40.73647 (12)0.30961 (11)0.34942 (5)0.0349 (3)
N50.57265 (13)0.37168 (13)0.22458 (5)0.0462 (3)
N60.81107 (12)0.21866 (12)0.48359 (5)0.0380 (3)
C10.41230 (14)0.20883 (14)0.46275 (6)0.0373 (3)
C20.29505 (15)0.24217 (17)0.48545 (7)0.0490 (4)
H20.20460.21330.47160.059*
C30.33301 (15)0.32738 (17)0.53326 (7)0.0485 (4)
H30.27270.36570.55740.058*
C40.47210 (14)0.34452 (14)0.53839 (6)0.0372 (3)
C50.56728 (15)0.41779 (14)0.58293 (6)0.0396 (3)
H5A0.62090.47710.56140.047*
H5B0.51280.46790.60820.047*
C60.5889 (2)0.25212 (16)0.65700 (8)0.0590 (5)
H6A0.65490.19730.68140.088*
H6B0.52400.20050.63030.088*
H6C0.53850.30220.68330.088*
C70.76343 (19)0.40912 (16)0.66004 (7)0.0552 (4)
H7A0.71710.45910.68790.083*
H7B0.81150.46550.63550.083*
H7C0.83000.35230.68290.083*
C80.43384 (16)0.11967 (14)0.41380 (6)0.0393 (3)
H8A0.50850.06050.42910.047*
H8B0.34890.06970.40290.047*
C90.50189 (17)0.08705 (14)0.31653 (7)0.0451 (4)
H9A0.42070.03480.30400.068*
H9B0.57740.03380.33530.068*
H9C0.52950.12930.28140.068*
C100.35561 (16)0.25880 (15)0.33159 (7)0.0439 (4)
H10A0.38200.30050.29610.066*
H10B0.33340.32250.36020.066*
H10C0.27500.20550.31960.066*
C110.85627 (14)0.26252 (15)0.37998 (6)0.0404 (4)
C120.96231 (16)0.3169 (2)0.35660 (8)0.0666 (6)
H121.05750.30250.36920.080*
C130.90529 (18)0.3985 (2)0.31040 (8)0.0707 (6)
H130.95540.44850.28600.085*
C140.76571 (16)0.39331 (15)0.30672 (7)0.0458 (4)
C150.65633 (17)0.45768 (16)0.26511 (7)0.0476 (4)
H15A0.59560.50420.28900.057*
H15B0.69980.52000.24100.057*
C160.6545 (2)0.3079 (2)0.18498 (9)0.0700 (5)
H16A0.69310.37000.15990.105*
H16B0.59620.24880.15940.105*
H16C0.72930.26170.20890.105*
C170.46052 (19)0.4411 (2)0.18979 (8)0.0663 (5)
H17A0.49850.50570.16570.099*
H17B0.40430.48140.21710.099*
H17C0.40340.38290.16320.099*
C180.85787 (15)0.16923 (14)0.42902 (6)0.0393 (3)
H18A0.79850.09730.41420.047*
H18B0.95280.13690.43950.047*
C190.8157 (2)0.11775 (19)0.52785 (8)0.0661 (6)
H19A0.91080.08890.53850.099*
H19B0.75830.04740.51090.099*
H19C0.78110.14920.56380.099*
C200.89513 (18)0.3249 (2)0.50799 (8)0.0625 (5)
H20A0.86250.35480.54470.094*
H20B0.88810.39310.47840.094*
H20C0.99130.29810.51730.094*
H200.6493 (17)0.2851 (14)0.3558 (7)0.043 (4)*
H210.6060 (17)0.2653 (14)0.4890 (7)0.041 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0285 (6)0.0417 (7)0.0296 (6)0.0026 (5)0.0065 (5)0.0023 (5)
N20.0341 (6)0.0344 (6)0.0313 (6)0.0056 (5)0.0089 (5)0.0064 (5)
N30.0475 (7)0.0375 (6)0.0351 (6)0.0031 (5)0.0001 (5)0.0050 (5)
N40.0295 (6)0.0445 (7)0.0308 (6)0.0035 (5)0.0047 (5)0.0056 (5)
N50.0467 (7)0.0568 (8)0.0343 (7)0.0057 (6)0.0025 (5)0.0107 (6)
N60.0340 (6)0.0474 (7)0.0332 (6)0.0068 (5)0.0077 (5)0.0083 (5)
C10.0342 (7)0.0474 (8)0.0307 (7)0.0086 (6)0.0063 (6)0.0022 (6)
C20.0313 (7)0.0744 (11)0.0421 (8)0.0096 (7)0.0081 (6)0.0073 (8)
C30.0383 (8)0.0698 (11)0.0399 (8)0.0049 (8)0.0137 (6)0.0077 (8)
C40.0403 (8)0.0431 (8)0.0288 (7)0.0023 (6)0.0072 (6)0.0020 (6)
C50.0484 (8)0.0382 (8)0.0316 (7)0.0022 (6)0.0038 (6)0.0024 (6)
C60.0730 (12)0.0494 (10)0.0539 (10)0.0039 (9)0.0066 (9)0.0128 (8)
C70.0630 (11)0.0518 (10)0.0453 (9)0.0061 (8)0.0117 (8)0.0119 (8)
C80.0445 (8)0.0400 (8)0.0342 (7)0.0105 (6)0.0080 (6)0.0033 (6)
C90.0548 (9)0.0420 (8)0.0406 (8)0.0034 (7)0.0141 (7)0.0112 (7)
C100.0435 (8)0.0469 (8)0.0410 (8)0.0006 (7)0.0053 (7)0.0030 (7)
C110.0307 (7)0.0562 (9)0.0345 (7)0.0002 (6)0.0057 (6)0.0080 (7)
C120.0313 (8)0.1101 (16)0.0584 (11)0.0065 (9)0.0062 (7)0.0342 (11)
C130.0435 (9)0.1081 (16)0.0603 (11)0.0204 (10)0.0060 (8)0.0423 (11)
C140.0438 (8)0.0559 (9)0.0367 (8)0.0095 (7)0.0025 (6)0.0136 (7)
C150.0535 (9)0.0504 (9)0.0375 (8)0.0030 (7)0.0015 (7)0.0110 (7)
C160.0836 (14)0.0752 (13)0.0530 (11)0.0044 (11)0.0158 (10)0.0043 (10)
C170.0569 (10)0.0914 (14)0.0467 (10)0.0045 (10)0.0065 (8)0.0234 (10)
C180.0353 (7)0.0477 (8)0.0357 (7)0.0070 (6)0.0077 (6)0.0066 (6)
C190.0795 (13)0.0785 (13)0.0444 (9)0.0340 (11)0.0229 (9)0.0284 (9)
C200.0444 (9)0.0851 (13)0.0582 (11)0.0051 (9)0.0077 (8)0.0207 (10)
Geometric parameters (Å, º) top
N1—C11.3689 (17)C7—H7C0.9800
N1—C41.3700 (17)C8—H8A0.9900
N1—H210.886 (17)C8—H8B0.9900
N2—C101.4557 (18)C9—H9A0.9800
N2—C91.4605 (17)C9—H9B0.9800
N2—C81.4704 (17)C9—H9C0.9800
N3—C71.4519 (19)C10—H10A0.9800
N3—C61.453 (2)C10—H10B0.9800
N3—C51.4666 (18)C10—H10C0.9800
N4—C111.3710 (18)C11—C121.360 (2)
N4—C141.3693 (18)C11—C181.4820 (19)
N4—H200.926 (16)C12—C131.408 (2)
N5—C161.450 (2)C12—H120.9500
N5—C151.460 (2)C13—C141.363 (2)
N5—C171.458 (2)C13—H130.9500
N6—C191.4599 (19)C14—C151.489 (2)
N6—C201.459 (2)C15—H15A0.9900
N6—C181.4683 (17)C15—H15B0.9900
C1—C21.370 (2)C16—H16A0.9800
C1—C81.4906 (19)C16—H16B0.9800
C2—C31.416 (2)C16—H16C0.9800
C2—H20.9500C17—H17A0.9800
C3—C41.367 (2)C17—H17B0.9800
C3—H30.9500C17—H17C0.9800
C4—C51.4903 (19)C18—H18A0.9900
C5—H5A0.9900C18—H18B0.9900
C5—H5B0.9900C19—H19A0.9800
C6—H6A0.9800C19—H19B0.9800
C6—H6B0.9800C19—H19C0.9800
C6—H6C0.9800C20—H20A0.9800
C7—H7A0.9800C20—H20B0.9800
C7—H7B0.9800C20—H20C0.9800
C1—N1—C4110.12 (12)N2—C9—H9C109.5
C1—N1—H21123.9 (10)H9A—C9—H9C109.5
C4—N1—H21126.0 (10)H9B—C9—H9C109.5
C10—N2—C9109.09 (11)N2—C10—H10A109.5
C10—N2—C8110.78 (11)N2—C10—H10B109.5
C9—N2—C8110.19 (11)H10A—C10—H10B109.5
C7—N3—C6110.34 (13)N2—C10—H10C109.5
C7—N3—C5111.10 (12)H10A—C10—H10C109.5
C6—N3—C5111.45 (13)H10B—C10—H10C109.5
C11—N4—C14109.83 (12)C12—C11—N4107.49 (13)
C11—N4—H20124.5 (10)C12—C11—C18130.10 (14)
C14—N4—H20125.6 (10)N4—C11—C18122.42 (12)
C16—N5—C15111.41 (14)C11—C12—C13107.51 (14)
C16—N5—C17110.36 (14)C11—C12—H12126.2
C15—N5—C17109.61 (14)C13—C12—H12126.2
C19—N6—C20110.40 (14)C14—C13—C12108.17 (14)
C19—N6—C18109.01 (12)C14—C13—H13125.9
C20—N6—C18111.38 (12)C12—C13—H13125.9
C2—C1—N1107.18 (13)C13—C14—N4106.99 (13)
C2—C1—C8130.86 (13)C13—C14—C15130.55 (14)
N1—C1—C8121.94 (12)N4—C14—C15122.42 (13)
C1—C2—C3107.69 (13)N5—C15—C14113.52 (13)
C1—C2—H2126.2N5—C15—H15A108.9
C3—C2—H2126.2C14—C15—H15A108.9
C4—C3—C2107.60 (13)N5—C15—H15B108.9
C4—C3—H3126.2C14—C15—H15B108.9
C2—C3—H3126.2H15A—C15—H15B107.7
C3—C4—N1107.40 (13)N5—C16—H16A109.5
C3—C4—C5130.62 (13)N5—C16—H16B109.5
N1—C4—C5121.87 (12)H16A—C16—H16B109.5
N3—C5—C4111.95 (12)N5—C16—H16C109.5
N3—C5—H5A109.2H16A—C16—H16C109.5
C4—C5—H5A109.2H16B—C16—H16C109.5
N3—C5—H5B109.2N5—C17—H17A109.5
C4—C5—H5B109.2N5—C17—H17B109.5
H5A—C5—H5B107.9H17A—C17—H17B109.5
N3—C6—H6A109.5N5—C17—H17C109.5
N3—C6—H6B109.5H17A—C17—H17C109.5
H6A—C6—H6B109.5H17B—C17—H17C109.5
N3—C6—H6C109.5N6—C18—C11114.39 (12)
H6A—C6—H6C109.5N6—C18—H18A108.7
H6B—C6—H6C109.5C11—C18—H18A108.7
N3—C7—H7A109.5N6—C18—H18B108.7
N3—C7—H7B109.5C11—C18—H18B108.7
H7A—C7—H7B109.5H18A—C18—H18B107.6
N3—C7—H7C109.5N6—C19—H19A109.5
H7A—C7—H7C109.5N6—C19—H19B109.5
H7B—C7—H7C109.5H19A—C19—H19B109.5
N2—C8—C1113.95 (11)N6—C19—H19C109.5
N2—C8—H8A108.8H19A—C19—H19C109.5
C1—C8—H8A108.8H19B—C19—H19C109.5
N2—C8—H8B108.8N6—C20—H20A109.5
C1—C8—H8B108.8N6—C20—H20B109.5
H8A—C8—H8B107.7H20A—C20—H20B109.5
N2—C9—H9A109.5N6—C20—H20C109.5
N2—C9—H9B109.5H20A—C20—H20C109.5
H9A—C9—H9B109.5H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H21···N60.886 (17)2.094 (17)2.9699 (16)169.8 (14)
N4—H20···N20.926 (16)2.095 (17)2.9939 (16)163.5 (14)
 

Acknowledgements

Financial support from Students Research Training of Shanxi University is gratefully acknowledged.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, J.-C., Chen, Y.-C., Datta, A., Lin, C.-H., Hsiao, C.-S. & Huang, J.-H. (2011). J. Organomet. Chem. 696, 3673–3680.  CrossRef CAS Google Scholar
First citationGuo, Z., Wei, X., Tong, H. & Liu, D. (2015). J. Organomet. Chem. 776, 136–142.  CrossRef CAS Google Scholar
First citationHerz, W., Dittmer, K. & Cristol, S.-J. (1947). J. Am. Chem. Soc. 69, 1698–1700.  CrossRef CAS Google Scholar
First citationHsiao, C.-S., Wang, T.-Y., Datta, A., Liao, F.-X., Hu, C.-H., Lin, C.-H., Huang, J.-H. & Lee, T.-Y. (2012). J. Organomet. Chem. 718, 82–88.  CrossRef CAS Google Scholar
First citationHsu, J.-W., Lin, Y.-C., Hsiao, C.-S., Datta, A., Lin, C.-H., Huang, J.-H., Tsai, J.-C. & Hsu, W.-C. (2012). Dalton Trans. 41, 7700–7707.  CrossRef CAS PubMed Google Scholar
First citationHuang, J.-H., Chen, H.-J., Hsieh, C.-C., Lee, G.-H. & Peng, S.-M. (2001). Inorg. Chim. Acta, 321, 142–148.  CrossRef CAS Google Scholar
First citationKuo, P.-C., Chang, J.-C., Lee, W.-Y., Lee, H.-M. & Huang, J.-H. (2005). J. Organomet. Chem. 690, 4168–4174.  CrossRef CAS Google Scholar
First citationKuo, P.-C., Huang, J.-H., Hung, C.-H., Lee, G.-H. & Peng, S.-M. (2003). Eur. J. Inorg. Chem. pp. 1440–1444.  CrossRef Google Scholar
First citationLee, W.-Y., Hsieh, C.-C., Hsu, J.-W., Datta, A., Lin, Y.-C., Huang, J.-H. & Lee, T.-Y. (2011). J. Organomet. Chem. 696, 3816–3821.  CrossRef CAS Google Scholar
First citationLi, Y.-H., Banerjee, S. & Odom, A. L. (2005). Organometallics, 24, 3272–3278.  CrossRef CAS Google Scholar
First citationLiu, P.-H., Chuang, F.-J., Tu, C.-Y., Hu, C.-H., Lin, T.-W., Wang, Y.-T., Lin, C.-H., Datta, A. & Huang, J. H. (2013). Dalton Trans. 42, 13754–13764.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-T., Lin, Y.-C., Hsu, S.-Y., Chen, R.-Y., Liu, P.-H., Datta, A., Lin, C.-H. & Huang, J.-H. (2013). J. Organomet. Chem. 745–746, 12–17.  CrossRef CAS Google Scholar
First citationWang, L.-F., Liu, D.-Y. & Cui, D.-M. (2012). Organometallics, 31, 6014–6021.  CrossRef CAS Google Scholar
First citationXia, A.-B., Heeg, M.-J. & Winter, C. H. (2002). Organometallics, 21, 4718–4725.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds