organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-[1-Phenyl-2,5-bis­­(tri­methyl­sil­yl)pent-2-en-4-yn-1-yl]aniline

CROSSMARK_Color_square_no_text.svg

aA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov St. 28, 119991, Moscow, Russia, and bLeibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: uwe.rosenthal@catalysis.de

Edited by H. Ishida, Okayama University, Japan (Received 27 September 2016; accepted 4 October 2016; online 7 October 2016)

The mol­ecular structure of the title compound, C23H31NSi2, reveals an acyclic conjugated enyne unit as the main feature. The central pent-2-en-4-yl fragment is essentially planar, with a maximum deviation of 0.0492 (7) Å from the mean plane defined by the C—C=C—C≡C unit. The dihedral angle between the phenyl rings is 84.44 (5)°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Compounds that contain conjugated enyne fragments are valuable building blocks in organic synthesis, since these are important units in medicinal and material science (Ochiai et al., 1999[Ochiai, B., Tomita, I. & Endo, T. (1999). Macromolecules, 32, 238-240.]; Saito et al., 2001[Saito, S., Kawasaki, T., Tsuboya, N. & Yamamoto, Y. (2001). J. Org. Chem. 66, 796-802.]). The title compound (Fig. 1[link]) was synthesized by hydrolysis of the corresponding zirconocene aza-metallacycle in toluene. The observed bond lengths and angles of the central acyclic amino-pent-2-en-4-yl fragment [C1—C2 1.2048 (17), C2—C3 1.4325 (16), C3—C4 1.3448 (15) Å; C1—C2—C3 175.03 (13), C2—C3—C4 126.26 (12)°] are comparable with those of similar derivatives with acyclic pent-2-en-4-yn-amides (Feng et al., 2014[Feng, C., Feng, D., Luo, Y. & Loh, T.-P. (2014). Org. Lett. 16, 5956-5959.]; Li et al., 2014[Li, Z., Ling, F., Cheng, D. & Ma, Ch. (2014). Org. Lett. 16, 1822-1825.]; Meng & Wan, 2013[Meng, X.-Z. & Wan, X.-J. (2013). Acta Cryst. E69, o78.]; Cheng et al., 2012[Cheng, D., Ling, F., Li, Z., Yao, W. & Ma, Ch. (2012). Org. Lett. 14, 3146-3149.]; Borbulevych et al., 1999[Borbulevych, O. Ya., Golding, I. R., Kharitonkin, A. B., Shishkin, O. V. & Gololobov, Y. G. (1999). Acta Cryst. C55, 1019-1020.], 2001[Borbulevych, O. Ya., Golding, I. R., Shchegolikhin, A. N., Klemenkova, Z. S. & Antipin, M. Yu. (2001). Acta Cryst. C57, 996-998.]), a polymer containing [(Ph)2N—CH2—C=C—C≡C–] building blocks (Enkelmann & Schleier, 1980[Enkelmann, V. & Schleier, G. (1980). Acta Cryst. B36, 1954-1956.]) and an ammonium salt (Kuminek et al., 2013[Kuminek, G., Rauber, G. S., Riekes, M. K., de Campos, C. E. M., Monti, G. A., Bortoluzzi, A. J., Cuffini, S. L. & Cardoso, S. G. (2013). J. Pharm. Biomed. Anal. 78-79, 105-111.]; Tedesco et al., 2002[Tedesco, E., Giron, D. & Pfeffer, S. (2002). CrystEngComm, 4, 393-400.]). As expected, the central pent-2-en-4-yl fragment of the title compound is nearly planar; mean deviation of the best plane defined by C1, C2, C3, C4 and C5 is 0.037 Å. The observed dihedral angle between the phenyl rings is 84.44 (5)°.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 30% probability level. For clarity H atoms except H1, H3 and H5 have been omitted.

Synthesis and crystallization

All manipulations were carried out under an argon atmos­phere using standard Schlenk techniques. Toluene and n-hexane were dried over two columns with activated alu­minium oxide with an Inert PureSolv MD5 solvent purification system (Innovative Technology). To a dark-red toluene solution (10 ml) of bis­(cyclo­penta­dien­yl){N-[1-phenyl-2,5-bis­(tri­methyl­sil­yl)pent-2-en-4-yn-1-yl]anilido}zirconium (0.242 g, 0.405 mmol), which was prepared according to the method of Burlakov et al. (2014[Burlakov, V. V., Becker, L., Bogdanov, V. S., Andreev, M. V., Arndt, P., Spannenberg, A., Baumann, W. & Rosenthal, U. (2014). Eur. J. Inorg. Chem. pp. 5304-5310.]), was added 8.5 ml of water saturated toluene and the resulting mixture was kept at room temperature without stirring. After one day, the light-yellow solution had evaporated to dryness. The residue was extracted with 10 ml of n-hexane. The colourless solution was filtered, concentrated to 1–1.5 ml and allowed to stand at room temperature. After one day, colourless crystals were separated from the mother liquor, washed with cold n-hexane, and dried in vacuum to give 0.088 g (58%) of the title compound. Single crystals were obtained from a saturated solution dissolved in n-hexane at room temperature.

M.p.: 99–100°C under Ar. Elemental analysis: calculated for C23H31NSi2: C 73.14, H 8.27, N 3.71%; found: C 72.83, H 8.02, N 3.50%. IR (ATR, cm−1): 2125, 2182 (C≡C), 3401(N—H). MS (70 eV, m/z): 377 [M]+, 304 [M - SiMe3]+, 197 [Me3SiC2—CH=CH—SiMe3 + H]+, 182 [PhN=CHPh + H]+, 73 [SiMe3]+.

1H NMR (300 MHz, C6D6, 297 K): δ (p.p.m.) 0.19 (s, 9H, SiMe3); 0.29 (s, 9H, SiMe3); 3.50 (d, 1H, NH); 5.07 (d, 1H, CHPh); 6.38 (m, 2H, o-Ph); 6.52 (s, 1H, CH=C); 6.69 (m, 1H, p-Ph) 7.03–7.11 (m, 7H, Ph). 13C NMR (75 MHz, C6D6, 297 K): δ (p.p.m.) −0.9, −0.3 (SiMe3); 63.1 (CHPh); 101.5, 105.7 (C≡C); 113.6 (o,m-Ph); 118.1, 121.3 (p-Ph); 127.9 (CH=C); 128.8, 128.8, 129.5 (o,m-Ph); 141.2, 147.1 (i-Ph); 156.8 (CH=C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C23H31NSi2
Mr 377.67
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 11.0662 (5), 11.1661 (5), 11.2508 (5)
α, β, γ (°) 65.2268 (6), 67.0573 (6), 71.9789 (6)
V3) 1144.57 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.46 × 0.31 × 0.31
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.93, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 22773, 5526, 4641
Rint 0.026
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.03
No. of reflections 5526
No. of parameters 245
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.20
Computer programs: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

N-[1-Phenyl-2,5-bis(trimethylsilyl)pent-2-en-4-yn-1-yl]aniline top
Crystal data top
C23H31NSi2Z = 2
Mr = 377.67F(000) = 408
Triclinic, P1Dx = 1.096 Mg m3
a = 11.0662 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1661 (5) ÅCell parameters from 9956 reflections
c = 11.2508 (5) Åθ = 2.4–28.8°
α = 65.2268 (6)°µ = 0.16 mm1
β = 67.0573 (6)°T = 150 K
γ = 71.9789 (6)°Prism, pale yellow
V = 1144.57 (9) Å30.46 × 0.31 × 0.31 mm
Data collection top
Bruker APEXII CCD
diffractometer
5526 independent reflections
Radiation source: fine-focus sealed tube4641 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.026
φ and ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.93, Tmax = 0.95k = 1414
22773 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.4111P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5526 reflectionsΔρmax = 0.35 e Å3
245 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.74405 (12)0.65953 (14)0.53612 (12)0.0277 (3)
C20.70399 (11)0.63622 (13)0.46400 (11)0.0242 (2)
C30.65238 (11)0.59872 (12)0.38833 (11)0.0223 (2)
H30.63190.51100.42760.027*
C40.63021 (10)0.67573 (11)0.26706 (11)0.0181 (2)
C50.56351 (11)0.62132 (11)0.20861 (11)0.0189 (2)
H50.61280.64090.10860.023*
C60.97016 (16)0.55728 (17)0.65491 (18)0.0444 (4)
H6A0.95180.46620.68960.067*
H6B1.00890.56570.71540.067*
H6C1.03310.57540.56200.067*
C70.84118 (16)0.85404 (15)0.58691 (16)0.0405 (3)
H7A0.89960.87620.49190.061*
H7B0.88320.86240.64460.061*
H7C0.75570.91560.59060.061*
C80.68621 (17)0.64354 (17)0.82272 (14)0.0427 (4)
H8A0.60460.71010.81760.064*
H8B0.72110.64780.88840.064*
H8C0.66620.55390.85300.064*
C90.84620 (12)0.84738 (14)0.15867 (14)0.0300 (3)
H9A0.90820.77670.12390.045*
H9B0.84870.83020.25060.045*
H9C0.87230.93430.09690.045*
C100.55181 (13)0.96905 (14)0.25251 (15)0.0320 (3)
H10A0.57591.05840.20240.048*
H10B0.55320.93930.34730.048*
H10C0.46220.97250.25260.048*
C110.66940 (14)0.89749 (13)0.01128 (12)0.0296 (3)
H11A0.68020.99130.06160.044*
H11B0.58370.88620.00830.044*
H11C0.74190.84030.05780.044*
C120.41890 (11)0.69124 (12)0.22133 (12)0.0213 (2)
C130.34076 (12)0.73615 (13)0.33064 (13)0.0258 (3)
H130.37890.72830.39660.031*
C140.20694 (13)0.79257 (15)0.34416 (16)0.0351 (3)
H140.15410.82320.41910.042*
C150.15117 (13)0.80401 (15)0.24842 (17)0.0396 (3)
H150.05980.84220.25790.048*
C160.22787 (14)0.76003 (15)0.13902 (16)0.0378 (3)
H160.18930.76790.07350.045*
C170.36149 (13)0.70431 (13)0.12505 (13)0.0282 (3)
H170.41420.67490.04930.034*
C180.67654 (12)0.38337 (12)0.24183 (12)0.0229 (2)
C190.66529 (14)0.24778 (13)0.29765 (14)0.0309 (3)
H190.58130.22190.35390.037*
C200.77569 (16)0.15132 (15)0.27136 (16)0.0395 (3)
H200.76660.05970.31020.047*
C210.89939 (15)0.18612 (16)0.18919 (17)0.0412 (3)
H210.97470.11930.17120.049*
C220.91101 (14)0.31931 (15)0.13411 (15)0.0371 (3)
H220.99530.34420.07750.044*
C230.80156 (12)0.41802 (14)0.15989 (13)0.0291 (3)
H230.81180.50930.12170.035*
N10.56481 (10)0.47771 (10)0.27120 (11)0.0242 (2)
Si10.81276 (3)0.67930 (4)0.65053 (3)0.02577 (9)
Si20.67391 (3)0.84901 (3)0.16732 (3)0.01984 (8)
H10.4925 (16)0.4510 (16)0.3107 (16)0.034 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0228 (6)0.0382 (7)0.0211 (5)0.0022 (5)0.0065 (5)0.0116 (5)
C20.0208 (5)0.0291 (6)0.0185 (5)0.0018 (5)0.0051 (4)0.0069 (5)
C30.0211 (5)0.0248 (6)0.0201 (5)0.0042 (4)0.0060 (4)0.0069 (5)
C40.0146 (5)0.0212 (6)0.0189 (5)0.0018 (4)0.0039 (4)0.0090 (4)
C50.0196 (5)0.0202 (6)0.0170 (5)0.0056 (4)0.0047 (4)0.0057 (4)
C60.0427 (8)0.0459 (9)0.0596 (10)0.0066 (7)0.0325 (8)0.0262 (8)
C70.0422 (8)0.0365 (8)0.0416 (8)0.0083 (6)0.0097 (6)0.0139 (7)
C80.0617 (10)0.0441 (9)0.0233 (6)0.0158 (7)0.0046 (6)0.0153 (6)
C90.0237 (6)0.0345 (7)0.0348 (7)0.0100 (5)0.0094 (5)0.0107 (6)
C100.0314 (7)0.0277 (7)0.0405 (7)0.0007 (5)0.0122 (6)0.0171 (6)
C110.0390 (7)0.0259 (7)0.0247 (6)0.0123 (5)0.0130 (5)0.0018 (5)
C120.0205 (5)0.0193 (6)0.0237 (5)0.0070 (4)0.0084 (4)0.0028 (4)
C130.0210 (5)0.0264 (6)0.0287 (6)0.0057 (5)0.0067 (5)0.0076 (5)
C140.0210 (6)0.0335 (7)0.0467 (8)0.0048 (5)0.0048 (5)0.0149 (6)
C150.0213 (6)0.0341 (8)0.0613 (9)0.0043 (5)0.0174 (6)0.0102 (7)
C160.0351 (7)0.0344 (8)0.0504 (8)0.0110 (6)0.0276 (7)0.0034 (6)
C170.0302 (6)0.0273 (7)0.0305 (6)0.0099 (5)0.0140 (5)0.0051 (5)
C180.0259 (6)0.0232 (6)0.0236 (5)0.0024 (5)0.0105 (5)0.0102 (5)
C190.0345 (7)0.0254 (7)0.0351 (7)0.0064 (5)0.0125 (5)0.0095 (5)
C200.0491 (9)0.0228 (7)0.0509 (9)0.0003 (6)0.0226 (7)0.0143 (6)
C210.0382 (8)0.0357 (8)0.0544 (9)0.0100 (6)0.0194 (7)0.0262 (7)
C220.0263 (6)0.0423 (8)0.0445 (8)0.0010 (6)0.0068 (6)0.0237 (7)
C230.0269 (6)0.0271 (7)0.0333 (6)0.0045 (5)0.0068 (5)0.0126 (5)
N10.0206 (5)0.0204 (5)0.0295 (5)0.0066 (4)0.0033 (4)0.0082 (4)
Si10.02876 (18)0.0307 (2)0.02222 (16)0.00232 (14)0.01080 (13)0.01223 (14)
Si20.01964 (15)0.01973 (17)0.02223 (15)0.00389 (12)0.00781 (12)0.00738 (12)
Geometric parameters (Å, º) top
C1—C21.2048 (17)C10—H10C0.9800
C1—Si11.8408 (13)C11—Si21.8664 (13)
C2—C31.4325 (16)C11—H11A0.9800
C3—C41.3448 (15)C11—H11B0.9800
C3—H30.9500C11—H11C0.9800
C4—C51.5288 (15)C12—C131.3897 (17)
C4—Si21.8903 (12)C12—C171.3945 (16)
C5—N11.4543 (15)C13—C141.3930 (17)
C5—C121.5274 (15)C13—H130.9500
C5—H51.0000C14—C151.383 (2)
C6—Si11.8534 (15)C14—H140.9500
C6—H6A0.9800C15—C161.382 (2)
C6—H6B0.9800C15—H150.9500
C6—H6C0.9800C16—C171.3892 (19)
C7—Si11.8579 (16)C16—H160.9500
C7—H7A0.9800C17—H170.9500
C7—H7B0.9800C18—N11.3838 (15)
C7—H7C0.9800C18—C231.3970 (17)
C8—Si11.8591 (15)C18—C191.4004 (18)
C8—H8A0.9800C19—C201.382 (2)
C8—H8B0.9800C19—H190.9500
C8—H8C0.9800C20—C211.386 (2)
C9—Si21.8656 (12)C20—H200.9500
C9—H9A0.9800C21—C221.377 (2)
C9—H9B0.9800C21—H210.9500
C9—H9C0.9800C22—C231.3907 (19)
C10—Si21.8675 (13)C22—H220.9500
C10—H10A0.9800C23—H230.9500
C10—H10B0.9800N1—H10.829 (16)
C2—C1—Si1174.85 (12)C13—C12—C5121.57 (10)
C1—C2—C3175.03 (13)C17—C12—C5119.36 (11)
C4—C3—C2126.26 (12)C12—C13—C14120.44 (12)
C4—C3—H3116.9C12—C13—H13119.8
C2—C3—H3116.9C14—C13—H13119.8
C3—C4—C5118.20 (10)C15—C14—C13119.92 (13)
C3—C4—Si2123.35 (9)C15—C14—H14120.0
C5—C4—Si2118.43 (8)C13—C14—H14120.0
N1—C5—C12107.86 (9)C16—C15—C14120.23 (12)
N1—C5—C4114.45 (9)C16—C15—H15119.9
C12—C5—C4111.42 (9)C14—C15—H15119.9
N1—C5—H5107.6C15—C16—C17119.92 (13)
C12—C5—H5107.6C15—C16—H16120.0
C4—C5—H5107.6C17—C16—H16120.0
Si1—C6—H6A109.5C16—C17—C12120.51 (13)
Si1—C6—H6B109.5C16—C17—H17119.7
H6A—C6—H6B109.5C12—C17—H17119.7
Si1—C6—H6C109.5N1—C18—C23122.40 (11)
H6A—C6—H6C109.5N1—C18—C19119.22 (11)
H6B—C6—H6C109.5C23—C18—C19118.38 (12)
Si1—C7—H7A109.5C20—C19—C18120.40 (13)
Si1—C7—H7B109.5C20—C19—H19119.8
H7A—C7—H7B109.5C18—C19—H19119.8
Si1—C7—H7C109.5C19—C20—C21121.08 (14)
H7A—C7—H7C109.5C19—C20—H20119.5
H7B—C7—H7C109.5C21—C20—H20119.5
Si1—C8—H8A109.5C22—C21—C20118.75 (13)
Si1—C8—H8B109.5C22—C21—H21120.6
H8A—C8—H8B109.5C20—C21—H21120.6
Si1—C8—H8C109.5C21—C22—C23121.20 (13)
H8A—C8—H8C109.5C21—C22—H22119.4
H8B—C8—H8C109.5C23—C22—H22119.4
Si2—C9—H9A109.5C22—C23—C18120.19 (13)
Si2—C9—H9B109.5C22—C23—H23119.9
H9A—C9—H9B109.5C18—C23—H23119.9
Si2—C9—H9C109.5C18—N1—C5123.30 (10)
H9A—C9—H9C109.5C18—N1—H1116.6 (11)
H9B—C9—H9C109.5C5—N1—H1118.3 (11)
Si2—C10—H10A109.5C1—Si1—C6107.81 (6)
Si2—C10—H10B109.5C1—Si1—C7109.84 (7)
H10A—C10—H10B109.5C6—Si1—C7111.43 (8)
Si2—C10—H10C109.5C1—Si1—C8106.75 (7)
H10A—C10—H10C109.5C6—Si1—C8111.28 (8)
H10B—C10—H10C109.5C7—Si1—C8109.60 (7)
Si2—C11—H11A109.5C9—Si2—C11108.21 (6)
Si2—C11—H11B109.5C9—Si2—C10110.05 (6)
H11A—C11—H11B109.5C11—Si2—C10111.04 (6)
Si2—C11—H11C109.5C9—Si2—C4110.10 (6)
H11A—C11—H11C109.5C11—Si2—C4107.97 (5)
H11B—C11—H11C109.5C10—Si2—C4109.44 (6)
C13—C12—C17118.98 (11)
C2—C3—C4—C5174.92 (10)N1—C18—C19—C20179.19 (12)
C2—C3—C4—Si23.72 (17)C23—C18—C19—C200.21 (19)
C3—C4—C5—N116.43 (14)C18—C19—C20—C210.3 (2)
Si2—C4—C5—N1164.86 (7)C19—C20—C21—C220.3 (2)
C3—C4—C5—C12106.27 (11)C20—C21—C22—C230.2 (2)
Si2—C4—C5—C1272.45 (10)C21—C22—C23—C180.6 (2)
N1—C5—C12—C1393.63 (13)N1—C18—C23—C22179.59 (12)
C4—C5—C12—C1332.78 (15)C19—C18—C23—C220.65 (19)
N1—C5—C12—C1782.99 (13)C23—C18—N1—C56.77 (18)
C4—C5—C12—C17150.60 (11)C19—C18—N1—C5174.29 (11)
C17—C12—C13—C140.39 (18)C12—C5—N1—C18158.89 (10)
C5—C12—C13—C14176.24 (11)C4—C5—N1—C1876.51 (13)
C12—C13—C14—C150.1 (2)C3—C4—Si2—C946.86 (11)
C13—C14—C15—C160.2 (2)C5—C4—Si2—C9134.49 (8)
C14—C15—C16—C170.1 (2)C3—C4—Si2—C11164.81 (10)
C15—C16—C17—C120.5 (2)C5—C4—Si2—C1116.55 (10)
C13—C12—C17—C160.70 (19)C3—C4—Si2—C1074.21 (11)
C5—C12—C17—C16176.01 (11)C5—C4—Si2—C10104.43 (9)
 

Acknowledgements

We thank our technical and analytical staff, in particular Kathleen Schubert, for assistance. Financial support by the Deutsche Forschungsgemeinschaft (RO 1269/9–1) and the Russian Foundation for Basic Research (Project code 15–03-03485) is gratefully acknowledged.

References

First citationBorbulevych, O. Ya., Golding, I. R., Kharitonkin, A. B., Shishkin, O. V. & Gololobov, Y. G. (1999). Acta Cryst. C55, 1019–1020.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBorbulevych, O. Ya., Golding, I. R., Shchegolikhin, A. N., Klemenkova, Z. S. & Antipin, M. Yu. (2001). Acta Cryst. C57, 996–998.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurlakov, V. V., Becker, L., Bogdanov, V. S., Andreev, M. V., Arndt, P., Spannenberg, A., Baumann, W. & Rosenthal, U. (2014). Eur. J. Inorg. Chem. pp. 5304–5310.  Web of Science CSD CrossRef Google Scholar
First citationCheng, D., Ling, F., Li, Z., Yao, W. & Ma, Ch. (2012). Org. Lett. 14, 3146–3149.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEnkelmann, V. & Schleier, G. (1980). Acta Cryst. B36, 1954–1956.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFeng, C., Feng, D., Luo, Y. & Loh, T.-P. (2014). Org. Lett. 16, 5956–5959.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKuminek, G., Rauber, G. S., Riekes, M. K., de Campos, C. E. M., Monti, G. A., Bortoluzzi, A. J., Cuffini, S. L. & Cardoso, S. G. (2013). J. Pharm. Biomed. Anal. 78–79, 105–111.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, Z., Ling, F., Cheng, D. & Ma, Ch. (2014). Org. Lett. 16, 1822–1825.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMeng, X.-Z. & Wan, X.-J. (2013). Acta Cryst. E69, o78.  CSD CrossRef IUCr Journals Google Scholar
First citationOchiai, B., Tomita, I. & Endo, T. (1999). Macromolecules, 32, 238–240.  Web of Science CrossRef CAS Google Scholar
First citationSaito, S., Kawasaki, T., Tsuboya, N. & Yamamoto, Y. (2001). J. Org. Chem. 66, 796–802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTedesco, E., Giron, D. & Pfeffer, S. (2002). CrystEngComm, 4, 393–400.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds