organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(2′-Eth­­oxy-4′-fluoro-[1,1′-biphen­yl]-4-yl)-4-phenyl-1H-1,2,3-triazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: rangappaks@chemistry.uni-mysore.ac.in

Edited by P. C. Healy, Griffith University, Australia (Received 20 October 2016; accepted 25 October 2016; online 28 October 2016)

In the title compound, C22H18FN3O, the triazole ring is planar. The plane of the triazole ring makes dihedral angles of 19.31 (10), 20.52 (10) and 39.82 (9)° with the planes of the benzene rings, indicating the overall nonplanarity of the molecule. No classical hydrogen bonds were observed in the structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Nitro­gen-containing heterocyclic compounds, such as 1,2,3-triazoles, have a wide-ranging biological spectrum, including anti­cancer activity (Duan et al., 2013[Duan, Y. C., Ma, Y. C., Zhang, E., Shi, X. J., Wang, M. M., Ye, X. W. & Liu, H. M. (2013). Eur. J. Med. Chem. 62, 11-19.]), anti­tubercular activity (Somu et al., 2006[Somu, R. V., Boshoff, H., Qiao, C., Bennett, E. M., Barry, C. E. & Aldrich, C. C. (2006). J. Med. Chem. A49, 31-34.]), anti-HIV activity, anti­bacterial activity, anti­allergic activity and selective β3-adrenergic receptor agonism (Brockunier et al., 2000[Brockunier, L. L., Parmee, E. R., Ok, H. O., Candelore, M. R., Cascieri, M. A., Colwell, L. F. Jr, Deng, L., Feeney, W. P., Forrest, M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, J., Fisher, M. H. & Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 2111-2114.]). They also have a wide range of other applications, such as dyes, corrosion inhibition, photostabilizers, photographic materials, and in the field of agrochemicals. Owing to their wide range of biological and technical inter­est and as a part of our ongoing research on triazoles (Ashwini et al., 2016[Ashwini, N., Naveen, S., Rakesh, K. S., Lokanath, N. K. & Rangappa, K. S. (2016). IUCrData, 1, x152458.]), the title compound was synthesized from the 1,3-dipolar cyclo­addition of an azide an and alkyne in the presence of a copper(I) catalyst to form a 1,4-disubstituted triazoles, contributing to the popularization of `click' chemistry as a highly effective method for the functionalization of triazoles.

In the title compound (Fig. 1[link]), the triazole ring is planar, with atom N1 deviating by 0.004 (1) Å from the mean plane. The plane of the triazole ring makes dihedral angles of 19.31 (10), 20.52 (10) and 39.82 (9)°, respectively, with the planes of the C3–C8, C9–C14 and C15–C20 benzene rings, indicating the non-planarity of the molecule as a whole. The eth­oxy group lies in the plane of the fluorophenyl ring and is in an anti­periplanar conformation, as indicated by the torsion angle of −175.08 (16)°. No classical hydrogen bonds were observed in the structure.

[Figure 1]
Figure 1
A view of the title mol­ecule, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Synthesis and crystallization

1-(4-Bromo­phen­yl)-4-phenyl-1,2,3-triazole (1 mmol), 2-eth­oxy-4-fluoro­benzenboronic acid (1.2 mmol) and K2CO3 (3 mmol) were added to a mixture of ethanol, water and 1,4-dioxane in the ratio of 1:1:5 and taken into a pressure tube. The reaction mixture was stirred for 15 min in the presence of nitro­gen gas to create inert atmosphere. Then Dikis, i.e. [PdCl2(PPh3)2], was added as a catalyst (0.1 mmol) to the reaction mass. The reaction mass was heated between 393 to 403 K for 30 min in a sealed tube and the progress of the reaction was monitored by thin-layer chromatography. The resultant mixture was filtered through a Celite bed and the filtrate concentrated under reduced pressure to remove the ethanol using a roto-evaporator. The reaction mass was extracted with ethyl acetate followed by a brine wash and dried over anhydrous sodium sulfate. The organic layer was evaporated under reduced pressure to get a crude product which was purified by column chromatography using 60:120 silica gel and EtOAc–hexane as a eluent to get the desired triazole as a white solid. Single crystals suitable for X-ray diffraction studies were obtained by the slow evaporation method by using ethanol as the solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C22H18FN3O
Mr 359.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 24.392 (3), 5.9336 (8), 12.3651 (16)
β (°) 100.828 (8)
V3) 1757.8 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.75
Crystal size (mm) 0.30 × 0.27 × 0.26
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.805, 0.828
No. of measured, independent and observed [I > 2σ(I)] reflections 12946, 2882, 2093
Rint 0.062
(sin θ/λ)max−1) 0.585
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.140, 1.04
No. of reflections 2882
No. of parameters 246
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

1-(2'-Ethoxy-4'-fluoro-[1,1'-biphenyl]-4-yl)-4-phenyl-1H-1,2,3-triazole top
Crystal data top
C22H18FN3OF(000) = 752
Mr = 359.39Dx = 1.358 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2093 reflections
a = 24.392 (3) Åθ = 7.2–64.5°
b = 5.9336 (8) ŵ = 0.75 mm1
c = 12.3651 (16) ÅT = 296 K
β = 100.828 (8)°Rectangle, white
V = 1757.8 (4) Å30.30 × 0.27 × 0.26 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2882 independent reflections
Radiation source: Rotating Anode2093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 18.4 pixels mm-1θmax = 64.5°, θmin = 7.2°
φ and ω scansh = 2824
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 66
Tmin = 0.805, Tmax = 0.828l = 1414
12946 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0787P)2 + 0.0093P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2882 reflectionsΔρmax = 0.23 e Å3
246 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (4)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 &gt; 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.05300 (5)0.8669 (2)0.28028 (9)0.0837 (5)
O10.11703 (5)0.4164 (2)0.03622 (10)0.0574 (5)
N10.31578 (6)0.5776 (2)0.40783 (12)0.0492 (5)
N20.32422 (7)0.3614 (3)0.44199 (15)0.0703 (7)
N30.35374 (8)0.3674 (3)0.54193 (15)0.0696 (7)
C10.33979 (7)0.7201 (3)0.48777 (14)0.0498 (7)
C20.36432 (7)0.5852 (3)0.57278 (15)0.0487 (7)
C30.39749 (7)0.6463 (3)0.68042 (15)0.0491 (7)
C40.42250 (8)0.8577 (3)0.69861 (16)0.0575 (7)
C50.45458 (9)0.9110 (4)0.79905 (17)0.0654 (8)
C60.46224 (9)0.7563 (4)0.88317 (17)0.0699 (9)
C70.43748 (9)0.5467 (4)0.86671 (16)0.0668 (8)
C80.40571 (8)0.4912 (4)0.76674 (15)0.0574 (7)
C90.28234 (7)0.6239 (3)0.30256 (15)0.0460 (6)
C100.27337 (8)0.4560 (3)0.22393 (16)0.0543 (7)
C110.23700 (8)0.4932 (3)0.12618 (15)0.0538 (7)
C120.20939 (7)0.6977 (3)0.10390 (14)0.0460 (6)
C130.22149 (8)0.8679 (3)0.18198 (15)0.0514 (7)
C140.25738 (8)0.8324 (3)0.28107 (16)0.0519 (7)
C150.16868 (7)0.7360 (3)0.00005 (14)0.0467 (7)
C160.12240 (8)0.5936 (3)0.03169 (14)0.0477 (7)
C170.08372 (8)0.6410 (3)0.12668 (15)0.0551 (7)
C180.09231 (9)0.8241 (4)0.18843 (15)0.0583 (7)
C190.13686 (9)0.9642 (4)0.16214 (16)0.0619 (8)
C200.17441 (8)0.9187 (3)0.06678 (15)0.0545 (7)
C210.06654 (8)0.2878 (3)0.01397 (16)0.0559 (7)
C220.06763 (9)0.1172 (4)0.10339 (17)0.0650 (8)
H10.339700.876800.485500.0600*
H40.417400.963700.642200.0690*
H50.471201.052400.810100.0780*
H60.484000.792500.951000.0840*
H70.442400.442500.923900.0800*
H80.389500.349100.756300.0690*
H100.291800.318600.236900.0650*
H110.230800.379000.073800.0650*
H130.205101.008800.167200.0620*
H140.264700.947600.332800.0620*
H170.052500.549800.147800.0660*
H190.141801.085800.206700.0740*
H200.204801.014300.046400.0650*
H21A0.063300.212500.056600.0670*
H21B0.034600.386600.010900.0670*
H22A0.100500.025500.108800.0980*
H22B0.035000.023500.086600.0980*
H22C0.068100.192900.172100.0980*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0920 (10)0.0886 (10)0.0600 (8)0.0091 (7)0.0124 (7)0.0138 (6)
O10.0568 (9)0.0542 (9)0.0559 (8)0.0108 (6)0.0027 (6)0.0035 (6)
N10.0496 (9)0.0376 (9)0.0565 (9)0.0019 (7)0.0003 (7)0.0027 (7)
N20.0877 (13)0.0413 (11)0.0711 (12)0.0010 (9)0.0126 (10)0.0049 (8)
N30.0853 (13)0.0454 (12)0.0675 (11)0.0005 (9)0.0126 (10)0.0052 (8)
C10.0464 (11)0.0408 (12)0.0590 (11)0.0039 (8)0.0018 (9)0.0015 (9)
C20.0451 (11)0.0430 (12)0.0566 (11)0.0010 (8)0.0058 (9)0.0049 (9)
C30.0433 (11)0.0487 (12)0.0536 (11)0.0057 (9)0.0046 (9)0.0036 (9)
C40.0575 (12)0.0529 (14)0.0580 (12)0.0006 (9)0.0004 (10)0.0045 (9)
C50.0657 (14)0.0556 (14)0.0690 (14)0.0025 (10)0.0023 (11)0.0058 (11)
C60.0723 (15)0.0705 (17)0.0603 (13)0.0116 (12)0.0045 (11)0.0079 (11)
C70.0704 (14)0.0714 (17)0.0561 (12)0.0140 (12)0.0052 (11)0.0100 (11)
C80.0569 (13)0.0531 (13)0.0606 (12)0.0046 (9)0.0067 (10)0.0064 (10)
C90.0425 (10)0.0415 (11)0.0516 (10)0.0029 (8)0.0026 (8)0.0026 (8)
C100.0547 (12)0.0430 (12)0.0627 (12)0.0061 (9)0.0043 (10)0.0028 (9)
C110.0561 (12)0.0451 (12)0.0579 (11)0.0005 (9)0.0050 (10)0.0087 (9)
C120.0470 (11)0.0407 (11)0.0501 (10)0.0034 (8)0.0088 (8)0.0010 (8)
C130.0567 (12)0.0373 (11)0.0572 (11)0.0011 (8)0.0028 (9)0.0025 (8)
C140.0557 (12)0.0418 (12)0.0541 (11)0.0035 (9)0.0002 (9)0.0041 (9)
C150.0522 (12)0.0433 (12)0.0445 (10)0.0011 (8)0.0088 (8)0.0045 (8)
C160.0554 (12)0.0430 (12)0.0432 (10)0.0023 (9)0.0056 (9)0.0031 (8)
C170.0572 (12)0.0554 (13)0.0497 (11)0.0016 (10)0.0026 (9)0.0073 (9)
C180.0662 (14)0.0624 (14)0.0425 (10)0.0133 (11)0.0003 (10)0.0013 (9)
C190.0777 (15)0.0546 (14)0.0539 (12)0.0080 (11)0.0140 (11)0.0102 (10)
C200.0584 (13)0.0490 (13)0.0572 (11)0.0002 (9)0.0134 (10)0.0005 (9)
C210.0475 (12)0.0567 (13)0.0612 (12)0.0070 (9)0.0042 (9)0.0070 (10)
C220.0634 (13)0.0575 (15)0.0721 (14)0.0083 (10)0.0074 (11)0.0008 (10)
Geometric parameters (Å, º) top
F1—C181.366 (2)C15—C201.385 (3)
O1—C161.367 (2)C16—C171.390 (3)
O1—C211.431 (2)C17—C181.367 (3)
N1—N21.354 (2)C18—C191.358 (3)
N1—C11.348 (2)C19—C201.377 (3)
N1—C91.427 (2)C21—C221.496 (3)
N2—N31.309 (3)C1—H10.9300
N3—C21.358 (3)C4—H40.9300
C1—C21.367 (3)C5—H50.9300
C2—C31.467 (3)C6—H60.9300
C3—C41.395 (3)C7—H70.9300
C3—C81.395 (3)C8—H80.9300
C4—C51.375 (3)C10—H100.9300
C5—C61.374 (3)C11—H110.9300
C6—C71.381 (3)C13—H130.9300
C7—C81.370 (3)C14—H140.9300
C9—C101.381 (3)C17—H170.9300
C9—C141.382 (3)C19—H190.9300
C10—C111.376 (3)C20—H200.9300
C11—C121.390 (3)C21—H21A0.9700
C12—C131.390 (3)C21—H21B0.9700
C12—C151.487 (2)C22—H22A0.9600
C13—C141.382 (3)C22—H22B0.9600
C15—C161.406 (3)C22—H22C0.9600
C16—O1—C21118.06 (14)C15—C20—C19122.56 (18)
N2—N1—C1110.23 (15)O1—C21—C22108.89 (16)
N2—N1—C9119.62 (14)N1—C1—H1127.00
C1—N1—C9130.03 (14)C2—C1—H1127.00
N1—N2—N3107.05 (16)C3—C4—H4120.00
N2—N3—C2109.44 (17)C5—C4—H4120.00
N1—C1—C2105.29 (15)C4—C5—H5120.00
N3—C2—C1107.98 (16)C6—C5—H5120.00
N3—C2—C3122.21 (17)C5—C6—H6120.00
C1—C2—C3129.81 (17)C7—C6—H6120.00
C2—C3—C4121.23 (16)C6—C7—H7120.00
C2—C3—C8120.43 (17)C8—C7—H7120.00
C4—C3—C8118.32 (17)C3—C8—H8120.00
C3—C4—C5120.68 (18)C7—C8—H8120.00
C4—C5—C6120.3 (2)C9—C10—H10120.00
C5—C6—C7119.8 (2)C11—C10—H10120.00
C6—C7—C8120.5 (2)C10—C11—H11119.00
C3—C8—C7120.5 (2)C12—C11—H11119.00
N1—C9—C10119.43 (16)C12—C13—H13119.00
N1—C9—C14120.22 (16)C14—C13—H13119.00
C10—C9—C14120.31 (17)C9—C14—H14120.00
C9—C10—C11119.58 (17)C13—C14—H14120.00
C10—C11—C12121.50 (17)C16—C17—H17121.00
C11—C12—C13117.70 (16)C18—C17—H17121.00
C11—C12—C15121.66 (16)C18—C19—H19121.00
C13—C12—C15120.64 (16)C20—C19—H19121.00
C12—C13—C14121.45 (17)C15—C20—H20119.00
C9—C14—C13119.32 (17)C19—C20—H20119.00
C12—C15—C16121.32 (16)O1—C21—H21A110.00
C12—C15—C20120.59 (16)O1—C21—H21B110.00
C16—C15—C20118.05 (16)C22—C21—H21A110.00
O1—C16—C15117.13 (15)C22—C21—H21B110.00
O1—C16—C17123.12 (17)H21A—C21—H21B108.00
C15—C16—C17119.72 (16)C21—C22—H22A109.00
C16—C17—C18118.82 (18)C21—C22—H22B109.00
F1—C18—C17117.08 (19)C21—C22—H22C109.00
F1—C18—C19119.37 (19)H22A—C22—H22B109.00
C17—C18—C19123.55 (19)H22A—C22—H22C109.00
C18—C19—C20117.3 (2)H22B—C22—H22C110.00
C21—O1—C16—C15171.58 (16)N1—C9—C10—C11173.95 (17)
C21—O1—C16—C176.3 (2)C14—C9—C10—C113.5 (3)
C16—O1—C21—C22175.08 (16)N1—C9—C14—C13174.70 (17)
C1—N1—N2—N30.7 (2)C10—C9—C14—C132.8 (3)
C9—N1—N2—N3177.13 (16)C9—C10—C11—C120.8 (3)
N2—N1—C1—C20.9 (2)C10—C11—C12—C132.7 (3)
C9—N1—C1—C2176.86 (17)C10—C11—C12—C15177.98 (17)
N2—N1—C9—C1019.9 (2)C11—C12—C13—C143.4 (3)
N2—N1—C9—C14157.63 (17)C15—C12—C13—C14177.19 (17)
C1—N1—C9—C10164.46 (18)C11—C12—C15—C1655.8 (2)
C1—N1—C9—C1418.1 (3)C11—C12—C15—C20126.4 (2)
N1—N2—N3—C20.2 (2)C13—C12—C15—C16124.8 (2)
N2—N3—C2—C10.4 (2)C13—C12—C15—C2053.0 (2)
N2—N3—C2—C3178.95 (17)C12—C13—C14—C90.8 (3)
N1—C1—C2—N30.8 (2)C12—C15—C16—O11.1 (3)
N1—C1—C2—C3178.51 (18)C12—C15—C16—C17176.85 (17)
N3—C2—C3—C4159.79 (19)C20—C15—C16—O1178.96 (16)
N3—C2—C3—C818.8 (3)C20—C15—C16—C171.0 (3)
C1—C2—C3—C419.4 (3)C12—C15—C20—C19178.16 (18)
C1—C2—C3—C8162.00 (19)C16—C15—C20—C190.3 (3)
C2—C3—C4—C5178.43 (18)O1—C16—C17—C18179.02 (18)
C8—C3—C4—C50.2 (3)C15—C16—C17—C181.2 (3)
C2—C3—C8—C7178.86 (18)C16—C17—C18—F1179.11 (17)
C4—C3—C8—C70.2 (3)C16—C17—C18—C190.1 (3)
C3—C4—C5—C60.3 (3)F1—C18—C19—C20177.84 (18)
C4—C5—C6—C70.2 (3)C17—C18—C19—C201.2 (3)
C5—C6—C7—C80.6 (3)C18—C19—C20—C151.4 (3)
C6—C7—C8—C30.6 (3)
 

Acknowledgements

The authors are thankful to IOE, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction facility.

References

First citationAshwini, N., Naveen, S., Rakesh, K. S., Lokanath, N. K. & Rangappa, K. S. (2016). IUCrData, 1, x152458.  Google Scholar
First citationBrockunier, L. L., Parmee, E. R., Ok, H. O., Candelore, M. R., Cascieri, M. A., Colwell, L. F. Jr, Deng, L., Feeney, W. P., Forrest, M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, J., Fisher, M. H. & Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 2111–2114.  CrossRef PubMed CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuan, Y. C., Ma, Y. C., Zhang, E., Shi, X. J., Wang, M. M., Ye, X. W. & Liu, H. M. (2013). Eur. J. Med. Chem. 62, 11–19.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSomu, R. V., Boshoff, H., Qiao, C., Bennett, E. M., Barry, C. E. & Aldrich, C. C. (2006). J. Med. Chem. A49, 31–34.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds