organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3H-1,2-Benzodi­thiole-3-thione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Constantine, BP, 325 Route de Ain El Bey, Constantine 25017, Algeria, and bC2P2 (CNRS-UMR 5265), COMS group, Lyon 1 University, ESCPE Lyon, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69626, France
*Correspondence e-mail: boukebbous.khaled@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 October 2016; accepted 20 October 2016; online 25 October 2016)

The almost planar (r.m.s. deviation = 0.034 Å) title compound, C7H4S3, was synthesized by reacting 2,2-di­thiodi­benzoic acid with phospho­rus penta­sulfide in xylene solution. In the crystal, short S⋯S [3.3727 (14), 3.3765 (13) and 3.4284 (13) Å] contacts and aromatic ππ stacking [shortest centroid–centroid separation = 3.618 (2) Å] are observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound belongs to the 1,2-di­thiole-3-thio­ne family, which has attracted recent inter­est because of the bioactive properties and potential applications of its members (Li et al., 2016[Li, K. R., Yang, S. Q., Gong, Y. Q., Yang, H., Li, X. M., Zhao, Y. X., Yao, J., Jiang, Q. & Cao, C. (2016). Sci. Rep. 6, 13.]; Russell et al., 2015[Russell, G. K., Gupta, R. C. & Vadhanam, M. V. (2015). Mutat. Res./Fundam. Mol. Mech. Mutagen. 774, 25-32.]).

The title compound is composed of a benzene ring fused with a five-membered ring containing two S atoms and a thione functional group (Fig. 1[link]). The geometry of the mol­ecule is almost planar (r.m.s. deviation = 0.034 Å), with bond lengths of 2.064 (1), 1.751 (3), 1.732 (3) and 1.654 (4) Å for S1—S2, C5—S1, C3—S2 and C3—S10, respectively. Furthermore, bond angles of 93.62 (12) and 98.24 (12)° are observed for C5—S1—S2 and S1—S2—C3, respectively. The S2—C3—C4 angle [113.5 (2)°] deviates from the expected value of 120° for a Csp2 atom (C3=S10); similarly, minor deviations of −3° are observed for the angles S1—C5—C4 and C5—C4—C3 from the expected value of 120° (C4=C5).

[Figure 1]
Figure 1
The title compound, with displacement ellipsoids drawn at the 50% probability level.

In the crystal, short S⋯S [3.3727 (14), 3.3765 (13) and 3.4284 (13) Å] contacts and aromatic ππ stacking [shortest centroid–centroid separation = 3.618 (2) Å] are observed (Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
The crystal packing of the title compound, with displacement ellipsoids drawn at the 50% probability level. Inversion centres at [0,0,0] and [1/4,1/4,0] with symmetry operations of (−x, −y, −z) and ([{1\over 2}] − x, [{1\over 2}] − y, −z), respectively, are shown as orange dots. Rotation and screw axes in the [010] direction at (0, y, 1/4) and (1/4, y, 1/4) with symmetry operations of (−x, y, [{1\over 2}] − z) and ([{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z), respectively, are shown as purple lines.
[Figure 3]
Figure 3
A view along the c axis of the packing. The shortest van der Waals inter­actions are shown as dashed blue lines.

Synthesis and crystallization

The synthesis of 3H-1,2-benzodi­thiole-3-thione was based on a previously reported method (Klingsberg & Schreiber, 1962[Klingsberg, E. & Schreiber, A. M. (1962). J. Am. Chem. Soc. 84, 2941-2944.]). To a xylene solution (150 ml) of 2,2-di­thiodi­benzoic acid (10 g, 0.033 mol) was added phospho­rus penta­sulfide (10 g, 0.04 mol) dissolved in xylene. The mixture was stirred for 1 h under reflux. The orange precipitate which formed was washed with distilled water and cold ethanol at 273 K successively and dried at room temperature for several hours. The recrystallization process was performed from toluene solution and red plates in a yield of 80% were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93–0.98 Å and N—H = 0.86–0.89 Å) and Uiso(H) values (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Table 1
Experimental details

Crystal data
Chemical formula C7H4S3
Mr 184.28
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 13.1921 (9), 7.5999 (5), 15.2507 (11)
β (°) 105.223 (7)
V3) 1475.36 (18)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.91
Crystal size (mm) 0.37 × 0.16 × 0.14
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Atlas Gemini ultra
Absorption correction Multi-scan [empirical absorption correction using spherical harmonics (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.602, 0.815
No. of measured, independent and observed [I > 2.0σ(I)] reflections 17502, 1969, 1784
Rint 0.070
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.174, 1.04
No. of reflections 1965
No. of parameters 91
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.80, −0.67
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

(I) top
Crystal data top
C7H4S3F(000) = 752
Mr = 184.28Dx = 1.659 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 16526 reflections
a = 13.1921 (9) Åθ = 3.4–29.4°
b = 7.5999 (5) ŵ = 0.91 mm1
c = 15.2507 (11) ÅT = 150 K
β = 105.223 (7)°Plate, red
V = 1475.36 (18) Å30.37 × 0.16 × 0.14 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
1969 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1784 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 10.4685 pixels mm-1θmax = 29.6°, θmin = 3.1°
ω scansh = 1718
Absorption correction: multi-scan
Empirical absorption correction using spherical harmonics, (Clark & Reid, 1995)
k = 1010
Tmin = 0.602, Tmax = 0.815l = 2020
17502 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.174 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.09P)2 + 10.33P] ,
where P = (max(Fo2,0) + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.0003912
1965 reflectionsΔρmax = 0.80 e Å3
91 parametersΔρmin = 0.67 e Å3
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58588 (7)0.30591 (11)0.64939 (6)0.0267
S20.71762 (6)0.15998 (11)0.71004 (6)0.0256
C30.7343 (3)0.0566 (4)0.6136 (2)0.0236
C40.6570 (3)0.1061 (4)0.5317 (2)0.0227
C50.5785 (3)0.2235 (4)0.5407 (2)0.0234
C60.4972 (3)0.2718 (5)0.4651 (2)0.0272
C70.4986 (3)0.2065 (5)0.3811 (3)0.0310
C80.5770 (3)0.0912 (5)0.3711 (2)0.0304
C90.6559 (3)0.0407 (4)0.4456 (2)0.0248
S100.83218 (7)0.08475 (12)0.62490 (6)0.0310
H910.70810.03760.43930.0301*
H810.57730.05010.31360.0362*
H710.44500.23880.33000.0373*
H610.44330.34660.47140.0335*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0287 (4)0.0234 (4)0.0270 (4)0.0048 (3)0.0053 (3)0.0032 (3)
S20.0261 (4)0.0260 (4)0.0238 (4)0.0021 (3)0.0049 (3)0.0008 (3)
C30.0255 (15)0.0216 (14)0.0255 (15)0.0018 (12)0.0101 (12)0.0000 (11)
C40.0284 (15)0.0155 (13)0.0247 (15)0.0022 (11)0.0075 (12)0.0000 (11)
C50.0273 (15)0.0174 (14)0.0252 (15)0.0007 (11)0.0062 (12)0.0024 (11)
C60.0274 (16)0.0236 (16)0.0290 (16)0.0032 (12)0.0046 (13)0.0017 (12)
C70.0323 (18)0.0271 (17)0.0297 (17)0.0013 (14)0.0015 (13)0.0022 (13)
C80.0389 (19)0.0250 (16)0.0273 (16)0.0036 (14)0.0088 (14)0.0023 (13)
C90.0288 (16)0.0190 (14)0.0281 (15)0.0013 (12)0.0101 (12)0.0008 (12)
S100.0310 (5)0.0303 (5)0.0329 (5)0.0098 (3)0.0105 (4)0.0044 (3)
Geometric parameters (Å, º) top
S1—S22.0644 (12)C6—C71.379 (5)
S1—C51.751 (3)C6—H610.935
S2—C31.731 (3)C7—C81.394 (5)
C3—C41.440 (5)C7—H710.937
C3—S101.653 (3)C8—C91.379 (5)
C4—C51.401 (5)C8—H810.932
C4—C91.401 (5)C9—H910.934
C5—C61.401 (5)
S2—S1—C593.62 (12)C5—C6—H61120.9
S1—S2—C398.24 (12)C7—C6—H61120.6
S2—C3—C4113.5 (2)C6—C7—C8121.3 (3)
S2—C3—S10118.5 (2)C6—C7—H71119.2
C4—C3—S10128.0 (3)C8—C7—H71119.5
C3—C4—C5117.1 (3)C7—C8—C9120.4 (3)
C3—C4—C9123.5 (3)C7—C8—H81120.1
C5—C4—C9119.4 (3)C9—C8—H81119.5
S1—C5—C4117.5 (2)C4—C9—C8119.6 (3)
S1—C5—C6121.7 (3)C4—C9—H91119.7
C4—C5—C6120.8 (3)C8—C9—H91120.7
C5—C6—C7118.4 (3)
 

Acknowledgements

We are grateful to The French National Center for Scientific Research (CNRS) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKlingsberg, E. & Schreiber, A. M. (1962). J. Am. Chem. Soc. 84, 2941–2944.  CrossRef CAS Google Scholar
First citationLi, K. R., Yang, S. Q., Gong, Y. Q., Yang, H., Li, X. M., Zhao, Y. X., Yao, J., Jiang, Q. & Cao, C. (2016). Sci. Rep. 6, 13.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.  Google Scholar
First citationRussell, G. K., Gupta, R. C. & Vadhanam, M. V. (2015). Mutat. Res./Fundam. Mol. Mech. Mutagen. 774, 25–32.  CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds