organic compounds
A correction has been published for this article. To view the correction, click here.
4-[(4-Hydroxymethyl-2H-1,2,3-triazol-2-yl)methyl]-6,8-dimethyl-2H-chromen-2-one
aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and bDepartment of Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, India
*Correspondence e-mail: mahendra@physics.uni-mysore.ac.in
In the title compound, C15H15N3O3, the dihedral angle between the triazole ring and coumarin ring system [r.m.s. deviation = 0.040 Å] is 77.40 (6)°. The O atom of the hydroxymethyl group deviates from the triazole ring plane by 1.345 (1) Å. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(22) loops; C—H⋯O and C—H⋯N interactions link the dimers into a three-dimensional network.
Keywords: crystal structure; chromene; triazole; hydrogen bonds.
CCDC reference: 1510042
Structure description
Coumarin derivatives represent an important class of natural and synthetic heterocycles that are often linked to a broad array of biological activities (Gaspar et al., 2015). As part of our ongoing studies of coumarin–triazole derivatives (El-Khatatneh et al., 2016), the title compound (Fig. 1) was synthesized and its is now reported.
The dihedral angle between the triazole ring and coumarin ring system [r.m.s. deviation = 0.040 Å] is 77.40 (6)°. Key inter-ring torsion angles include 97.34 (15)° for N19—N15—C14—C13) and −173.30 (13)° for C6—C13—C14—N15. The O atom of the hydroxymethyl group is displaced from the triazole ring plane by 1.345 (1) Å.
In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds (Table 1) generate R22(22) loops. The dimers are linked by weak C—H⋯O and C—H⋯N hydrogen bonds, generating a three-dimensional network (Fig. 2).
Synthesis and crystallization
A mixture of propargyl alcohol (1.9 mmol), sodium azide (0.14 g, 2.0 mmol), copper(I) iodide (10 mol%) and triethylamine (0.19 g, 1.9 mmol) in 20 ml of acetone was taken in a round-bottom flask and stirred for 1 h. To this mixture, 4-bromomethylcoumarin (1.9 mmol) was added and the stirring continued for 8 h (the reaction was monitored by TLC). After the completion of the reaction, the copper catalyst was filtered through celite and the product was extracted with diethyl ether (3.10 ml). The solvent was removed under vacuum. The crude product was dried and recrystallized from ethyl acetate solution to give colourless blocks.
Yield 92%; colourless solid; m.p. 210–212 °C; IR (KBr, cm−1): 1742 cm−1 (lactone C=O), 3311 cm−1 (OH); 1H NMR (400 MHz, CDCl3): δ 1.70 (s, 1H, OH), 2.37 (s, 3H, C6—CH3) 2.42 (s, 3H, C8—CH3) 4.83 (s, 2H, –CH2O–), 5.43 (s, 1H, C3—H), 5.70 (s, 2H, –CH2N–), 7.21-7.24 (m, 1H, C7—H), 7.60 (s, 1H, C5—H), 7.75 (s, 1H, Tr—H) p.p.m. 13C NMR (100 MHz, DMSO-d6): δ 15.0, 20.3, 49.0, 55.0, 113.0, 116.5, 122.0, 123.8, 125.3, 133.1, 134.5, 148.6, 149.5, 150.6, 159.5 p.p.m. Analysis C15H15N3O3. Calculated for: C, 63.15; H, 5.30; N, 14.73%. Found: C, 63.08; H, 5.26; N, 14.68%.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1510042
https://doi.org/10.1107/S2414314616016448/hb4087sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616016448/hb4087Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616016448/hb4087Isup3.cml
C15H15N3O3 | Z = 2 |
Mr = 285.30 | F(000) = 300 |
Triclinic, P1 | Dx = 1.364 Mg m−3 |
a = 6.0265 (16) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 11.062 (3) Å | Cell parameters from 2217 reflections |
c = 11.848 (3) Å | θ = 7.2–64.7° |
α = 108.812 (7)° | µ = 0.80 mm−1 |
β = 103.950 (8)° | T = 293 K |
γ = 100.848 (8)° | Block, colourless |
V = 694.5 (3) Å3 | 0.30 × 0.20 × 0.10 mm |
Bruker X8 Proteum diffractometer | 2142 reflections with I > 2σ(I) |
Radiation source: Bruker MicroStar microfocus rotating anode | Rint = 0.030 |
Helios multilayer optics monochromator | θmax = 64.7°, θmin = 7.2° |
Detector resolution: 18.4 pixels mm-1 | h = −6→7 |
φ and ω scans | k = −12→12 |
8218 measured reflections | l = −13→13 |
2217 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0622P)2 + 0.126P] where P = (Fo2 + 2Fc2)/3 |
2217 reflections | (Δ/σ)max < 0.001 |
194 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.14 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O9 | 0.37402 (19) | 0.76949 (10) | 0.45209 (9) | 0.0574 (3) | |
O21 | −0.04447 (19) | 1.36437 (12) | 0.82987 (11) | 0.0658 (3) | |
H21 | −0.055031 | 1.305321 | 0.763928 | 0.099* | |
O11 | 0.0867 (2) | 0.85556 (13) | 0.39863 (11) | 0.0757 (4) | |
C6 | 0.6271 (2) | 0.84311 (13) | 0.66749 (13) | 0.0452 (3) | |
N19 | 0.2818 (2) | 1.08969 (13) | 0.92565 (13) | 0.0596 (4) | |
N15 | 0.44456 (19) | 1.12365 (11) | 0.87345 (10) | 0.0450 (3) | |
C13 | 0.5024 (2) | 0.94266 (13) | 0.70280 (13) | 0.0458 (3) | |
C5 | 0.5580 (3) | 0.75918 (14) | 0.54097 (13) | 0.0485 (3) | |
N18 | 0.1788 (2) | 1.18550 (14) | 0.94803 (13) | 0.0598 (4) | |
C1 | 0.8117 (3) | 0.82578 (14) | 0.75347 (14) | 0.0500 (4) | |
H1 | 0.860125 | 0.880475 | 0.838505 | 0.060* | |
C12 | 0.3208 (3) | 0.94819 (14) | 0.61462 (14) | 0.0523 (4) | |
H12 | 0.240245 | 1.011061 | 0.638265 | 0.063* | |
C4 | 0.6663 (3) | 0.66137 (15) | 0.49641 (14) | 0.0560 (4) | |
C2 | 0.9229 (3) | 0.72895 (15) | 0.71413 (15) | 0.0542 (4) | |
C17 | 0.2756 (2) | 1.28047 (13) | 0.91088 (12) | 0.0454 (3) | |
C20 | 0.1846 (3) | 1.39858 (15) | 0.91808 (14) | 0.0556 (4) | |
H20A | 0.178228 | 1.440812 | 1.002359 | 0.067* | |
H20B | 0.295413 | 1.462794 | 0.903203 | 0.067* | |
C14 | 0.5903 (3) | 1.03629 (14) | 0.83948 (13) | 0.0517 (4) | |
H14A | 0.597759 | 0.983779 | 0.891184 | 0.062* | |
H14B | 0.751444 | 1.090828 | 0.859203 | 0.062* | |
C10 | 0.2480 (3) | 0.85893 (15) | 0.48426 (14) | 0.0552 (4) | |
C3 | 0.8477 (3) | 0.64959 (16) | 0.58574 (16) | 0.0614 (4) | |
H3 | 0.923601 | 0.585243 | 0.558673 | 0.074* | |
C16 | 0.4471 (2) | 1.24121 (13) | 0.86378 (13) | 0.0477 (3) | |
H16 | 0.545138 | 1.286513 | 0.831682 | 0.057* | |
C7 | 1.1162 (3) | 0.70920 (19) | 0.80743 (18) | 0.0718 (5) | |
H7A | 1.168804 | 0.636256 | 0.764247 | 0.108* | 0.31 (2) |
H7B | 1.055076 | 0.689718 | 0.869294 | 0.108* | 0.31 (2) |
H7C | 1.248294 | 0.789024 | 0.848366 | 0.108* | 0.31 (2) |
H7D | 1.145979 | 0.773742 | 0.890357 | 0.108* | 0.69 (2) |
H7E | 1.259707 | 0.720281 | 0.785311 | 0.108* | 0.69 (2) |
H7F | 1.066488 | 0.620975 | 0.806239 | 0.108* | 0.69 (2) |
C8 | 0.5915 (4) | 0.57393 (19) | 0.35871 (16) | 0.0760 (5) | |
H8A | 0.690144 | 0.613072 | 0.319554 | 0.114* | |
H8B | 0.427523 | 0.565734 | 0.318815 | 0.114* | |
H8C | 0.609121 | 0.487213 | 0.349891 | 0.114* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O9 | 0.0673 (7) | 0.0594 (6) | 0.0445 (5) | 0.0320 (5) | 0.0145 (5) | 0.0135 (4) |
O21 | 0.0540 (6) | 0.0732 (7) | 0.0627 (7) | 0.0362 (5) | 0.0113 (5) | 0.0124 (5) |
O11 | 0.0765 (8) | 0.0868 (8) | 0.0507 (6) | 0.0440 (7) | 0.0024 (6) | 0.0120 (6) |
C6 | 0.0468 (7) | 0.0422 (7) | 0.0487 (7) | 0.0192 (6) | 0.0170 (6) | 0.0156 (6) |
N19 | 0.0560 (7) | 0.0609 (7) | 0.0744 (9) | 0.0269 (6) | 0.0276 (6) | 0.0316 (6) |
N15 | 0.0420 (6) | 0.0456 (6) | 0.0436 (6) | 0.0198 (5) | 0.0113 (5) | 0.0105 (5) |
C13 | 0.0457 (7) | 0.0434 (7) | 0.0477 (7) | 0.0186 (6) | 0.0143 (6) | 0.0143 (6) |
C5 | 0.0549 (8) | 0.0481 (7) | 0.0481 (8) | 0.0228 (6) | 0.0189 (6) | 0.0197 (6) |
N18 | 0.0546 (7) | 0.0692 (8) | 0.0696 (8) | 0.0322 (6) | 0.0297 (6) | 0.0294 (7) |
C1 | 0.0504 (8) | 0.0486 (7) | 0.0508 (8) | 0.0237 (6) | 0.0155 (6) | 0.0144 (6) |
C12 | 0.0518 (8) | 0.0524 (8) | 0.0514 (8) | 0.0272 (6) | 0.0136 (6) | 0.0136 (6) |
C4 | 0.0723 (10) | 0.0526 (8) | 0.0518 (8) | 0.0309 (7) | 0.0283 (7) | 0.0180 (7) |
C2 | 0.0564 (8) | 0.0527 (8) | 0.0607 (9) | 0.0290 (7) | 0.0213 (7) | 0.0218 (7) |
C17 | 0.0420 (7) | 0.0472 (7) | 0.0401 (7) | 0.0183 (6) | 0.0094 (5) | 0.0082 (5) |
C20 | 0.0553 (8) | 0.0534 (8) | 0.0509 (8) | 0.0274 (6) | 0.0126 (6) | 0.0080 (6) |
C14 | 0.0488 (8) | 0.0502 (8) | 0.0502 (8) | 0.0271 (6) | 0.0099 (6) | 0.0093 (6) |
C10 | 0.0560 (8) | 0.0583 (8) | 0.0493 (8) | 0.0268 (7) | 0.0117 (7) | 0.0163 (7) |
C3 | 0.0766 (11) | 0.0591 (9) | 0.0647 (9) | 0.0434 (8) | 0.0329 (8) | 0.0237 (7) |
C16 | 0.0467 (7) | 0.0452 (7) | 0.0535 (8) | 0.0203 (6) | 0.0196 (6) | 0.0156 (6) |
C7 | 0.0739 (11) | 0.0756 (11) | 0.0714 (11) | 0.0479 (9) | 0.0187 (9) | 0.0242 (9) |
C8 | 0.1070 (15) | 0.0748 (11) | 0.0542 (10) | 0.0497 (11) | 0.0331 (10) | 0.0167 (8) |
O9—C10 | 1.3712 (18) | C4—C8 | 1.505 (2) |
O9—C5 | 1.3833 (18) | C2—C3 | 1.395 (2) |
O21—C20 | 1.4118 (18) | C2—C7 | 1.503 (2) |
O21—H21 | 0.8200 | C17—C16 | 1.3635 (19) |
O11—C10 | 1.2089 (19) | C17—C20 | 1.4952 (19) |
C6—C5 | 1.392 (2) | C20—H20A | 0.9700 |
C6—C1 | 1.404 (2) | C20—H20B | 0.9700 |
C6—C13 | 1.4554 (18) | C14—H14A | 0.9700 |
N19—N18 | 1.3135 (18) | C14—H14B | 0.9700 |
N19—N15 | 1.3375 (17) | C3—H3 | 0.9300 |
N15—C16 | 1.3395 (18) | C16—H16 | 0.9300 |
N15—C14 | 1.4513 (16) | C7—H7A | 0.9600 |
C13—C12 | 1.345 (2) | C7—H7B | 0.9600 |
C13—C14 | 1.5080 (19) | C7—H7C | 0.9600 |
C5—C4 | 1.392 (2) | C7—H7D | 0.9600 |
N18—C17 | 1.352 (2) | C7—H7E | 0.9600 |
C1—C2 | 1.3829 (19) | C7—H7F | 0.9600 |
C1—H1 | 0.9300 | C8—H8A | 0.9600 |
C12—C10 | 1.442 (2) | C8—H8B | 0.9600 |
C12—H12 | 0.9300 | C8—H8C | 0.9600 |
C4—C3 | 1.384 (2) | ||
C10—O9—C5 | 122.09 (11) | N15—C14—H14B | 108.6 |
C20—O21—H21 | 109.5 | C13—C14—H14B | 108.6 |
C5—C6—C1 | 117.93 (12) | H14A—C14—H14B | 107.6 |
C5—C6—C13 | 118.08 (12) | O11—C10—O9 | 115.82 (13) |
C1—C6—C13 | 123.98 (12) | O11—C10—C12 | 126.45 (14) |
N18—N19—N15 | 106.63 (11) | O9—C10—C12 | 117.73 (13) |
N19—N15—C16 | 110.78 (11) | C4—C3—C2 | 123.61 (13) |
N19—N15—C14 | 119.15 (12) | C4—C3—H3 | 118.2 |
C16—N15—C14 | 130.04 (12) | C2—C3—H3 | 118.2 |
C12—C13—C6 | 119.78 (12) | N15—C16—C17 | 105.51 (12) |
C12—C13—C14 | 123.64 (12) | N15—C16—H16 | 127.2 |
C6—C13—C14 | 116.58 (11) | C17—C16—H16 | 127.2 |
O9—C5—C6 | 120.68 (12) | C2—C7—H7A | 109.5 |
O9—C5—C4 | 116.33 (13) | C2—C7—H7B | 109.5 |
C6—C5—C4 | 122.99 (13) | H7A—C7—H7B | 109.5 |
N19—N18—C17 | 109.68 (12) | C2—C7—H7C | 109.5 |
C2—C1—C6 | 121.27 (14) | H7A—C7—H7C | 109.5 |
C2—C1—H1 | 119.4 | H7B—C7—H7C | 109.5 |
C6—C1—H1 | 119.4 | C2—C7—H7D | 109.5 |
C13—C12—C10 | 121.56 (13) | H7A—C7—H7D | 141.1 |
C13—C12—H12 | 119.2 | H7B—C7—H7D | 56.3 |
C10—C12—H12 | 119.2 | H7C—C7—H7D | 56.3 |
C3—C4—C5 | 116.29 (14) | C2—C7—H7E | 109.5 |
C3—C4—C8 | 121.84 (14) | H7A—C7—H7E | 56.3 |
C5—C4—C8 | 121.87 (14) | H7B—C7—H7E | 141.1 |
C1—C2—C3 | 117.89 (14) | H7C—C7—H7E | 56.3 |
C1—C2—C7 | 120.78 (14) | H7D—C7—H7E | 109.5 |
C3—C2—C7 | 121.33 (13) | C2—C7—H7F | 109.5 |
N18—C17—C16 | 107.39 (12) | H7A—C7—H7F | 56.3 |
N18—C17—C20 | 121.83 (13) | H7B—C7—H7F | 56.3 |
C16—C17—C20 | 130.68 (14) | H7C—C7—H7F | 141.1 |
O21—C20—C17 | 112.70 (12) | H7D—C7—H7F | 109.5 |
O21—C20—H20A | 109.1 | H7E—C7—H7F | 109.5 |
C17—C20—H20A | 109.1 | C4—C8—H8A | 109.5 |
O21—C20—H20B | 109.1 | C4—C8—H8B | 109.5 |
C17—C20—H20B | 109.1 | H8A—C8—H8B | 109.5 |
H20A—C20—H20B | 107.8 | C4—C8—H8C | 109.5 |
N15—C14—C13 | 114.71 (11) | H8A—C8—H8C | 109.5 |
N15—C14—H14A | 108.6 | H8B—C8—H8C | 109.5 |
C13—C14—H14A | 108.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
O21—H21···O11i | 0.82 | 2.10 | 2.9155 (19) | 176 |
C14—H14A···N19ii | 0.97 | 2.55 | 3.486 (2) | 162 |
C14—H14B···N18iii | 0.97 | 2.41 | 3.344 (2) | 162 |
C16—H16···O21iii | 0.93 | 2.47 | 3.284 (2) | 146 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y+2, −z+2; (iii) x+1, y, z. |
Acknowledgements
MM thanks UGC, New Delhi, Government of India, for awarding a project under the title F. No. 41–920/2012(SR) dated: 25–07–2012. SD is grateful to the Council of Scientific and Industrial Research, New Delhi, India, for financial assistance [Grant No. 02 (0172)/13/EMR-II].
References
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc.,Madison, Wisconsin, USA. Google Scholar
El-Khatatneh, N., Chandra Shamala, D., Shivashankarb, K. & Mahendra, M. (2016). IUCrData, 1, x161618. Google Scholar
Gaspar, A., Milhazes, N., Santana, L., Uriarte, E., Borges, F. & Matos, M. J. (2015). Curr. Top. Med. Chem. 15, 432–445. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.