organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-3-(2,3-Di­meth­­oxy­phen­yl)-1-(2-hy­dr­oxy-5-meth­­oxy­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 September 2016; accepted 21 September 2016; online 7 October 2016)

In the title chalcone derivative, C18H18O5, the dihedral angle formed by the planes of the benzene rings is 29.6 (2)° and an intra­molecular O—H⋯O hydrogen bond closes an S(6) ring. In the crystal, weak C—H⋯O hydrogen bonds link mol­ecules into chains propagating along [001].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones are α,β-unsaturated carbonyl (enone) compounds that connect two aromatic components. They are one of the secondary metabolites found in plants with a C6—C3—C6 skeleton. In this chalcone, the C3 skeleton is an open chain but in other metabolites such as flavones, the C3 skeleton is a closed chain. A variety of chalcones have been isolated from natural sources and synthesized due to their wide spectrum of biological activities (Singh et al., 2014[Singh, P., Anand, A. & Kumar, V. (2014). Eur. J. Med. Chem. 85, 758-777.]). In a continuation of research to develop new chalcones that show a broad range of biological activities (Jung et al., 2015[Jung, H., Ahn, S., Jung, Y., Noh, H., Kim, S. Y., Koh, D. & Lim, Y. (2015). Magn. Reson. Chem. 53, 391-397.]), the crystal structure of title compound (Fig. 1[link]) has been determined. The structure of a related substituted chalcone compound was reported by Srividya et al. (2015[Srividya, J., Reuben Jonathan, D., Revathi, B. K. & Anbalagan, G. (2015). Acta Cryst. E71, o610-o611.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

The trans conformation of the C9=C10 double bond in the central enone group is confirmed by the C1—C9=C10—C11 torsion angle of 173.37 (17)°. The dihedral angle between the planes of the benzene rings is 29.6 (2)°. The C1=O1 double bond [1.239 (2) Å] is longer than the normal value as this group accepts an intra­molecular hydrogen bond from the hy­droxy group, thereby forming an S(6) ring (Table 1[link]). Among the three meth­oxy groups attached to the benzene rings, the two groups at meta positions to the central enone group are tilted slightly [C5—C6—O3—C8 = −1.2 (3)° and C14—C13—O5—C18 = −7.5 (2)°] from their attached ring. However, the C atom of the group at the ortho position is orthogonal to the benzene ring [C13—C12—O4—C17 = 90.7 (2)°].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.83 1.81 2.543 (2) 146
C4—H4⋯O4i 0.94 2.57 3.468 (2) 161
Symmetry code: (i) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

In the crystal, weak C—H⋯O hydrogen bonds link mol­ecules into chains propagating along [001] (Fig. 2[link]).

[Figure 2]
Figure 2
Part of the crystal structure of the title compound, showing the weak C—H⋯O hydrogen bonds as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

To a solution of 2,3-di­meth­oxy­benzaldehyde (392 mg, 2 mmol) in 20 ml of anhydrous ethanol was added 2-hy­droxy-5-meth­oxy­aceto­phenone (332 mg, 2 mmol) and the temperature was adjusted to around 276–277 K in an ice bath. To the cooled reaction mixture was added 2 ml of 50% aqueous KOH solution, and the reaction mixture was stirred at room temperature for 27 h. This mixture was poured into iced water (80 ml) and was acidified with 4 N HCl solution to give a precipitate. Filtration and washing with water afforded the crude solid of the title compound (yield 270 mg, 72%). Recrystallization of the solid from ethanol solution gave orange blocks (m.p. 370–371 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H18O5
Mr 314.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 223
a, b, c (Å) 4.6056 (3), 24.7911 (13), 13.7523 (7)
β (°) 98.751 (3)
V3) 1551.93 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.15 × 0.12 × 0.07
 
Data collection
Diffractometer Bruker PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.985, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 68518, 3870, 2340
Rint 0.100
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.126, 1.02
No. of reflections 3870
No. of parameters 212
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2000[Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-3-(2,3-Dimethoxyphenyl)-1-(2-hydroxy-5-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C18H18O5F(000) = 664
Mr = 314.32Dx = 1.345 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9647 reflections
a = 4.6056 (3) Åθ = 2.2–24.1°
b = 24.7911 (13) ŵ = 0.10 mm1
c = 13.7523 (7) ÅT = 223 K
β = 98.751 (3)°Block, orange
V = 1551.93 (15) Å30.15 × 0.12 × 0.07 mm
Z = 4
Data collection top
Bruker PHOTON 100 CMOS
diffractometer
3870 independent reflections
Radiation source: fine-focus sealed tube2340 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
φ and ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 66
Tmin = 0.985, Tmax = 0.993k = 3333
68518 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.4891P]
where P = (Fo2 + 2Fc2)/3
3870 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7490 (4)0.69540 (7)0.89539 (13)0.0489 (5)
O10.8227 (4)0.72888 (5)0.83684 (10)0.0707 (4)
C20.5807 (4)0.71236 (7)0.97281 (13)0.0463 (4)
C30.5374 (4)0.76761 (7)0.98920 (15)0.0547 (5)
O20.6399 (4)0.80615 (5)0.93304 (12)0.0727 (4)
H20.70840.79160.88710.109*
C40.3920 (5)0.78349 (8)1.06494 (18)0.0655 (6)
H40.37100.82051.07720.079*
C50.2771 (4)0.74642 (9)1.12297 (16)0.0628 (6)
H50.17660.75811.17370.075*
C60.3100 (4)0.69169 (8)1.10626 (15)0.0538 (5)
C70.4625 (4)0.67553 (7)1.03285 (13)0.0490 (5)
H70.48810.63841.02270.059*
O30.1997 (3)0.65114 (6)1.15815 (11)0.0715 (4)
C80.0446 (5)0.66650 (10)1.23604 (16)0.0731 (6)
H8A0.17690.68531.28650.110*
H8B0.03160.63451.26410.110*
H8C0.11700.69011.21050.110*
C90.8415 (4)0.63896 (7)0.88882 (13)0.0483 (4)
H90.79400.61390.93530.058*
C100.9897 (4)0.62256 (7)0.81934 (13)0.0459 (4)
H101.01460.64780.77030.055*
C111.1186 (4)0.56948 (6)0.81078 (12)0.0418 (4)
C121.2194 (4)0.55511 (6)0.72359 (12)0.0390 (4)
C131.3518 (4)0.50506 (6)0.71390 (12)0.0400 (4)
C141.3921 (4)0.46977 (7)0.79275 (13)0.0493 (4)
H141.48520.43640.78760.059*
C151.2936 (5)0.48418 (7)0.87926 (14)0.0572 (5)
H151.32000.46010.93270.069*
C161.1587 (5)0.53265 (8)0.88889 (14)0.0541 (5)
H161.09250.54130.94840.065*
O41.1979 (3)0.59122 (4)0.64707 (8)0.0437 (3)
C170.9323 (4)0.58633 (8)0.57896 (13)0.0519 (5)
H17A0.92260.55080.54930.078*
H17B0.92870.61350.52810.078*
H17C0.76530.59140.61330.078*
O51.4313 (3)0.49495 (5)0.62408 (9)0.0483 (3)
C181.5974 (4)0.44727 (7)0.61420 (15)0.0557 (5)
H18A1.77710.44820.66120.084*
H18B1.64540.44530.54800.084*
H18C1.48260.41590.62660.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0567 (11)0.0368 (9)0.0496 (11)0.0016 (8)0.0031 (9)0.0031 (8)
O10.1060 (12)0.0399 (7)0.0672 (9)0.0002 (7)0.0168 (9)0.0057 (7)
C20.0452 (10)0.0341 (9)0.0543 (11)0.0057 (8)0.0088 (8)0.0076 (8)
C30.0497 (11)0.0340 (9)0.0739 (13)0.0046 (8)0.0110 (10)0.0083 (9)
O20.0829 (11)0.0346 (7)0.0973 (12)0.0037 (7)0.0032 (9)0.0026 (7)
C40.0552 (12)0.0403 (11)0.0957 (16)0.0130 (9)0.0056 (12)0.0230 (11)
C50.0513 (12)0.0574 (12)0.0766 (14)0.0148 (10)0.0001 (10)0.0231 (11)
C60.0468 (11)0.0481 (10)0.0635 (12)0.0122 (9)0.0009 (9)0.0082 (9)
C70.0507 (11)0.0362 (9)0.0571 (11)0.0109 (8)0.0009 (9)0.0098 (8)
O30.0770 (10)0.0630 (9)0.0802 (11)0.0197 (8)0.0303 (8)0.0026 (8)
C80.0602 (13)0.0933 (17)0.0670 (14)0.0187 (12)0.0140 (11)0.0105 (12)
C90.0577 (11)0.0348 (9)0.0524 (11)0.0001 (8)0.0084 (9)0.0014 (8)
C100.0587 (11)0.0355 (9)0.0427 (10)0.0030 (8)0.0050 (8)0.0007 (7)
C110.0469 (10)0.0359 (8)0.0419 (9)0.0021 (7)0.0047 (7)0.0024 (7)
C120.0413 (9)0.0348 (8)0.0401 (9)0.0066 (7)0.0034 (7)0.0050 (7)
C130.0420 (9)0.0360 (9)0.0422 (9)0.0046 (7)0.0068 (7)0.0007 (7)
C140.0580 (11)0.0399 (9)0.0498 (11)0.0061 (8)0.0070 (9)0.0059 (8)
C150.0801 (14)0.0472 (11)0.0450 (11)0.0117 (10)0.0120 (10)0.0145 (9)
C160.0717 (13)0.0512 (11)0.0414 (10)0.0073 (10)0.0146 (9)0.0058 (8)
O40.0487 (7)0.0368 (6)0.0453 (7)0.0061 (5)0.0065 (5)0.0096 (5)
C170.0515 (11)0.0540 (11)0.0491 (11)0.0026 (9)0.0034 (9)0.0118 (9)
O50.0586 (8)0.0430 (7)0.0455 (7)0.0042 (6)0.0150 (6)0.0017 (5)
C180.0568 (12)0.0503 (11)0.0611 (12)0.0078 (9)0.0122 (10)0.0054 (9)
Geometric parameters (Å, º) top
C1—O11.239 (2)C10—C111.456 (2)
C1—O11.239 (2)C10—H100.9400
C1—C91.470 (2)C11—C121.396 (2)
C1—C21.470 (3)C11—C161.401 (2)
C2—C71.396 (3)C12—O41.3735 (18)
C2—C31.407 (2)C12—C131.398 (2)
C3—O21.358 (2)C13—O51.3638 (19)
C3—C41.378 (3)C13—C141.384 (2)
O2—H20.8300C14—C151.383 (3)
C4—C51.375 (3)C14—H140.9400
C4—H40.9400C15—C161.368 (3)
C5—C61.388 (3)C15—H150.9400
C5—H50.9400C16—H160.9400
C6—O31.374 (2)O4—C171.428 (2)
C6—C71.374 (3)C17—H17A0.9700
C7—H70.9400C17—H17B0.9700
O3—C81.427 (2)C17—H17C0.9700
C8—H8A0.9700O5—C181.426 (2)
C8—H8B0.9700C18—H18A0.9700
C8—H8C0.9700C18—H18B0.9700
C9—C101.320 (2)C18—H18C0.9700
C9—H90.9400
O1—C1—C9119.15 (18)C9—C10—H10116.6
O1—C1—C9119.15 (18)C11—C10—H10116.6
O1—C1—C2120.38 (16)C12—C11—C16118.04 (16)
O1—C1—C2120.38 (16)C12—C11—C10119.54 (15)
C9—C1—C2120.43 (16)C16—C11—C10122.35 (16)
C7—C2—C3117.66 (18)O4—C12—C11119.81 (14)
C7—C2—C1122.50 (15)O4—C12—C13119.15 (14)
C3—C2—C1119.83 (18)C11—C12—C13121.01 (15)
O2—C3—C4118.67 (17)O5—C13—C14124.84 (15)
O2—C3—C2121.58 (19)O5—C13—C12115.50 (14)
C4—C3—C2119.7 (2)C14—C13—C12119.67 (16)
C3—O2—H2109.5C15—C14—C13119.24 (16)
C5—C4—C3121.45 (18)C15—C14—H14120.4
C5—C4—H4119.3C13—C14—H14120.4
C3—C4—H4119.3C16—C15—C14121.55 (17)
C4—C5—C6119.7 (2)C16—C15—H15119.2
C4—C5—H5120.1C14—C15—H15119.2
C6—C5—H5120.1C15—C16—C11120.47 (17)
O3—C6—C7116.04 (16)C15—C16—H16119.8
O3—C6—C5124.80 (19)C11—C16—H16119.8
C7—C6—C5119.2 (2)C12—O4—C17113.69 (13)
C6—C7—C2122.20 (17)O4—C17—H17A109.5
C6—C7—H7118.9O4—C17—H17B109.5
C2—C7—H7118.9H17A—C17—H17B109.5
C6—O3—C8117.49 (17)O4—C17—H17C109.5
O3—C8—H8A109.5H17A—C17—H17C109.5
O3—C8—H8B109.5H17B—C17—H17C109.5
H8A—C8—H8B109.5C13—O5—C18117.41 (13)
O3—C8—H8C109.5O5—C18—H18A109.5
H8A—C8—H8C109.5O5—C18—H18B109.5
H8B—C8—H8C109.5H18A—C18—H18B109.5
C10—C9—C1121.63 (17)O5—C18—H18C109.5
C10—C9—H9119.2H18A—C18—H18C109.5
C1—C9—H9119.2H18B—C18—H18C109.5
C9—C10—C11126.80 (17)
C9—C1—O1—O10.0 (7)O1—C1—C9—C103.1 (3)
C2—C1—O1—O10.0 (7)C2—C1—C9—C10179.19 (17)
O1—C1—C2—C7172.15 (17)C1—C9—C10—C11173.37 (17)
O1—C1—C2—C7172.15 (17)C9—C10—C11—C12167.80 (18)
C9—C1—C2—C710.2 (3)C9—C10—C11—C1615.2 (3)
O1—C1—C2—C38.7 (3)C16—C11—C12—O4176.65 (16)
O1—C1—C2—C38.7 (3)C10—C11—C12—O40.4 (2)
C9—C1—C2—C3168.97 (16)C16—C11—C12—C131.1 (3)
C7—C2—C3—O2178.73 (16)C10—C11—C12—C13178.18 (16)
C1—C2—C3—O22.0 (3)O4—C12—C13—O54.5 (2)
C7—C2—C3—C42.4 (3)C11—C12—C13—O5177.70 (15)
C1—C2—C3—C4176.83 (17)O4—C12—C13—C14175.79 (15)
O2—C3—C4—C5178.46 (19)C11—C12—C13—C142.0 (3)
C2—C3—C4—C52.6 (3)O5—C13—C14—C15178.06 (17)
C3—C4—C5—C60.8 (3)C12—C13—C14—C151.6 (3)
C4—C5—C6—O3178.65 (19)C13—C14—C15—C160.3 (3)
C4—C5—C6—C71.2 (3)C14—C15—C16—C110.5 (3)
O3—C6—C7—C2178.49 (16)C12—C11—C16—C150.2 (3)
C5—C6—C7—C21.4 (3)C10—C11—C16—C15176.85 (19)
C3—C2—C7—C60.4 (3)C11—C12—O4—C1791.57 (18)
C1—C2—C7—C6178.80 (17)C13—C12—O4—C1790.65 (19)
C7—C6—O3—C8178.92 (17)C14—C13—O5—C187.5 (2)
C5—C6—O3—C81.2 (3)C12—C13—O5—C18172.89 (15)
O1—C1—C9—C103.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.831.812.543 (2)146
C4—H4···O4i0.942.573.468 (2)161
Symmetry code: (i) x1, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by a Dongduk Women's University grant.

References

First citationBruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJung, H., Ahn, S., Jung, Y., Noh, H., Kim, S. Y., Koh, D. & Lim, Y. (2015). Magn. Reson. Chem. 53, 391–397.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, P., Anand, A. & Kumar, V. (2014). Eur. J. Med. Chem. 85, 758–777.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSrividya, J., Reuben Jonathan, D., Revathi, B. K. & Anbalagan, G. (2015). Acta Cryst. E71, o610–o611.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds