organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-[5-(Pyridin-4-yl)-1,3,4-oxa­diazol-2-yl]-4H-chromen-4-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 25 September 2016; accepted 13 October 2016; online 18 October 2016)

In the title mol­ecule, C16H9N3O3, the plane of oxa­diazole ring is almost coplanar with attached pyridine ring and chromenyl ring system, forming dihedral angles of 2.37 (3) and 6.71 (2)°, respectively. In the crystal, a pair of C—H⋯O and C—H⋯N hydrogen-bond inter­actions lead to the formation of dimers, which are linked together into [100] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Heterocycles possessing five-membered rings have attracted lots of inter­est due to their versatile pharmacological and biological activities. Oxa­diazole is a furan-type five-membered ring heterocycle in which two nitro­gen atoms substitute two carbons. Depending on the positions of the replacing nitro­gen atoms, several types of oxa­diazole isomers are formed. Examples of oxa­diazole structures have been published (dos Santos et al., 2014[Santos, A. F. dos, Cristiano, R., Athayde-Filho, P. F. & Bortoluzzi, A. J. (2014). Acta Cryst. E70, o559.]; Sharma et al., 2014[Sharma, D. K., Shripanavar, C. S., Anthal, S., Gupta, V. K. & Kant, R. (2014). Acta Cryst. E70, o357-o358.]). In particular, 1,3,4-oxa­diazo­les have been extensively investigated in medicinal chemistry. They have been found to show anti-fungal (Wani et al. 2015[Wani, M. Y., Ahmad, A., Shiekh, R. A., Al-Ghamdi, K. J. & Sobral, A. B. (2015). Bioorg. Med. Chem. 23, 4172-4180.]), anti-inflammatory (Banerjee et al. 2015[Banerjee, A. G., Das, N., Shengule, S. A., Srivastava, R. S. & Shrivastava, S. K. (2015). Eur. J. Med. Chem. 101, 81-95.]), anti-microbial (Li et al. 2015[Li, P., Shi, L., Gao, M. N., Yang, X., Xue, W., Jin, L. H., Hu, D. Y. & Song, B. A. (2015). Bioorg. Med. Chem. Lett. 25, 481-484.]), and anti­cancer activities (Mochona et al. 2016[Mochona, B., Qi, X., Euynni, S., Sikazwi, D., Mateeva, N. & Soliman, K. F. (2016). Bioorg. Med. Chem. Lett. 26, 2847-2851.]).

We have focused our research on chalcones (Shin et al. 2014[Shin, S. Y., Lee, J. M., Lee, M. S., Koh, D., Jung, H., Lim, Y. & Lee, Y. H. (2014). Clin. Cancer Res. 20, 4302-4313.], Lee et al. 2016[Lee, D. H., Jung, Y. J., Koh, D., Lim, Y., Lee, Y. H. & Shin, S. Y. (2016). Cancer Lett. 372, 1-9.]), which have a central conjugated enone system connecting two aromatic rings. In a continuation of this research program, the central enone of chalcone was modified to an oxa­diazole ring. Herein, the crystal structure of title oxa­diazole compound is reported.

The mol­ecular structure is shown in Fig. 1[link]. The plane of the oxa­diazole ring is almost co-planar with attached pyridine ring and chromenyl ring system, making dihedral angles of 2.37 (3) and 6.71 (2)°, respectively. In the crystal, a pair of C—H⋯O and C—H⋯N hydrogen bonds (Table 1[link]) lead to the formation of dimers, which are linked together into [100] chains (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.94 2.55 3.2517 (19) 132
C14—H14⋯N1i 0.94 2.63 3.248 (2) 123
Symmetry code: (i) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of the title compound, showing the C—H⋯O and C—H⋯N hydrogen bonds as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

The synthetic procedure is shown in Fig. 3[link]. To a solution of 4-oxo-4H-chromene-3-carbaldehyde (348 mg, 2 mmol) in 20 ml of anhydrous ethanol was added isonicotinohydrazide (274 mg, 2 mmol) and a catalytic amount of glacial acetic acid. The temperature of the mixture was adjusted to around 358 K in an oil-bath and the mixture was refluxed for 5 h. Then the reaction mixture was cooled down to the room temperature to give a precipitate. Filtration and washing with ethanol afforded a solid of the inter­mediate compound (I, 88%) which was used in the next step without further purification. The inter­mediate compound (I, 196 mg, 0.5 mmol) was dissolved in 10 ml of di­chloro­methane and iodo­benzenedi­acetate (276 mg, 0.8 mmol) was added. The reaction mixture was stirred at room temperature for 12 h and the solvent was evaporated under vacuum to produce a solid. Recrystallization of the solid from methanol solution gave yellow block-shaped crystals for this study (m.p. 513–514 K).

[Figure 3]
Figure 3
The synthetic procedure for the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H9N3O3
Mr 291.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 223
a, b, c (Å) 6.7439 (2), 10.8441 (3), 17.7415 (6)
β (°) 100.7317 (13)
V3) 1274.77 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.13 × 0.12 × 0.09
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.986, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 38727, 3188, 2438
Rint 0.050
(sin θ/λ)max−1) 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.07
No. of reflections 3188
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-[5-(Pyridin-4-yl)-1,3,4-oxadiazol-2-yl]-4H-chromen-4-one top
Crystal data top
C16H9N3O3F(000) = 600
Mr = 291.26Dx = 1.518 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9683 reflections
a = 6.7439 (2) Åθ = 2.2–28.3°
b = 10.8441 (3) ŵ = 0.11 mm1
c = 17.7415 (6) ÅT = 223 K
β = 100.7317 (13)°Block, yellow
V = 1274.77 (7) Å30.13 × 0.12 × 0.09 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3188 independent reflections
Radiation source: fine-focus sealed tube2438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.986, Tmax = 0.990k = 1414
38727 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.045P)2 + 0.5495P]
where P = (Fo2 + 2Fc2)/3
3188 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1618 (2)0.24444 (14)0.01388 (8)0.0301 (3)
O10.31711 (18)0.22005 (13)0.03664 (8)0.0540 (4)
C20.1492 (2)0.34564 (14)0.04011 (8)0.0282 (3)
C30.3161 (2)0.42116 (15)0.06691 (9)0.0361 (4)
H30.43820.40780.04980.043*
C40.3024 (3)0.51438 (16)0.11791 (10)0.0421 (4)
H40.41450.56520.13530.050*
C50.1229 (3)0.53389 (16)0.14399 (10)0.0417 (4)
H50.11560.59720.17960.050*
C60.0439 (3)0.46201 (15)0.11854 (9)0.0373 (4)
H60.16540.47560.13600.045*
C70.0282 (2)0.36883 (13)0.06637 (8)0.0287 (3)
O20.19977 (16)0.29944 (10)0.04199 (6)0.0342 (3)
C80.1928 (2)0.20816 (14)0.00834 (9)0.0299 (3)
H80.31180.16300.02510.036*
C90.0281 (2)0.17627 (13)0.03673 (8)0.0254 (3)
C100.0427 (2)0.07610 (13)0.09176 (8)0.0266 (3)
O30.21616 (14)0.00778 (9)0.10556 (5)0.0247 (2)
C110.1816 (2)0.07098 (13)0.16119 (8)0.0265 (3)
N10.0061 (2)0.05671 (13)0.17827 (9)0.0408 (3)
N20.0862 (2)0.04037 (13)0.13246 (9)0.0411 (4)
C120.3365 (2)0.15833 (13)0.19546 (8)0.0257 (3)
C130.5241 (2)0.16371 (13)0.17404 (8)0.0285 (3)
H130.55650.11070.13620.034*
C140.6622 (2)0.24943 (14)0.21005 (9)0.0319 (3)
H140.78870.25320.19510.038*
N30.6283 (2)0.32645 (12)0.26410 (8)0.0350 (3)
C150.4466 (2)0.31961 (15)0.28450 (9)0.0363 (4)
H150.41940.37320.32300.044*
C160.2980 (2)0.23835 (14)0.25208 (9)0.0320 (3)
H160.17270.23710.26800.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0233 (7)0.0345 (8)0.0325 (7)0.0026 (6)0.0051 (6)0.0007 (6)
O10.0276 (6)0.0684 (9)0.0695 (9)0.0109 (6)0.0183 (6)0.0293 (7)
C20.0285 (7)0.0289 (7)0.0260 (7)0.0024 (6)0.0014 (5)0.0017 (6)
C30.0293 (8)0.0385 (9)0.0381 (8)0.0055 (6)0.0002 (6)0.0002 (7)
C40.0415 (9)0.0385 (9)0.0411 (9)0.0092 (7)0.0056 (7)0.0044 (7)
C50.0524 (10)0.0362 (9)0.0337 (8)0.0030 (8)0.0007 (7)0.0089 (7)
C60.0413 (9)0.0365 (8)0.0343 (8)0.0002 (7)0.0079 (7)0.0042 (7)
C70.0295 (7)0.0287 (7)0.0268 (7)0.0024 (6)0.0027 (6)0.0012 (6)
O20.0285 (5)0.0367 (6)0.0390 (6)0.0048 (4)0.0109 (4)0.0109 (5)
C80.0260 (7)0.0306 (7)0.0332 (7)0.0042 (6)0.0060 (6)0.0041 (6)
C90.0243 (7)0.0245 (7)0.0269 (7)0.0002 (5)0.0036 (5)0.0011 (5)
C100.0219 (7)0.0262 (7)0.0318 (7)0.0015 (5)0.0057 (6)0.0016 (6)
O30.0234 (5)0.0253 (5)0.0257 (5)0.0014 (4)0.0050 (4)0.0013 (4)
C110.0275 (7)0.0241 (7)0.0285 (7)0.0029 (5)0.0066 (6)0.0007 (6)
N10.0312 (7)0.0402 (8)0.0542 (9)0.0060 (6)0.0163 (6)0.0192 (7)
N20.0323 (7)0.0403 (8)0.0543 (9)0.0080 (6)0.0171 (6)0.0183 (7)
C120.0268 (7)0.0235 (7)0.0261 (7)0.0020 (5)0.0027 (5)0.0020 (5)
C130.0290 (7)0.0269 (7)0.0305 (7)0.0017 (6)0.0073 (6)0.0013 (6)
C140.0261 (7)0.0327 (8)0.0367 (8)0.0013 (6)0.0055 (6)0.0023 (6)
N30.0305 (7)0.0331 (7)0.0402 (7)0.0027 (5)0.0037 (6)0.0049 (6)
C150.0360 (8)0.0352 (8)0.0377 (8)0.0000 (7)0.0071 (7)0.0105 (7)
C160.0287 (8)0.0327 (8)0.0357 (8)0.0013 (6)0.0088 (6)0.0050 (6)
Geometric parameters (Å, º) top
C1—O11.2198 (19)C9—C101.452 (2)
C1—C91.4687 (19)C10—N21.2886 (19)
C1—C21.470 (2)C10—O31.3677 (16)
C2—C71.385 (2)O3—C111.3579 (16)
C2—C31.402 (2)C11—N11.2844 (19)
C3—C41.371 (2)C11—C121.4566 (19)
C3—H30.9400N1—N21.4026 (19)
C4—C51.390 (3)C12—C161.388 (2)
C4—H40.9400C12—C131.389 (2)
C5—C61.374 (2)C13—C141.385 (2)
C5—H50.9400C13—H130.9400
C6—C71.388 (2)C14—N31.323 (2)
C6—H60.9400C14—H140.9400
C7—O21.3804 (17)N3—C151.343 (2)
O2—C81.3398 (17)C15—C161.377 (2)
C8—C91.347 (2)C15—H150.9400
C8—H80.9400C16—H160.9400
O1—C1—C9123.91 (14)C10—C9—C1120.58 (12)
O1—C1—C2122.36 (14)N2—C10—O3112.35 (13)
C9—C1—C2113.73 (12)N2—C10—C9129.32 (13)
C7—C2—C3117.99 (14)O3—C10—C9118.32 (12)
C7—C2—C1120.88 (13)C11—O3—C10102.35 (11)
C3—C2—C1121.13 (14)N1—C11—O3112.72 (13)
C4—C3—C2120.38 (16)N1—C11—C12126.91 (13)
C4—C3—H3119.8O3—C11—C12120.36 (12)
C2—C3—H3119.8C11—N1—N2106.41 (12)
C3—C4—C5120.12 (15)C10—N2—N1106.13 (12)
C3—C4—H4119.9C16—C12—C13118.32 (13)
C5—C4—H4119.9C16—C12—C11119.51 (13)
C6—C5—C4120.97 (16)C13—C12—C11122.17 (13)
C6—C5—H5119.5C14—C13—C12118.09 (13)
C4—C5—H5119.5C14—C13—H13121.0
C5—C6—C7118.22 (16)C12—C13—H13121.0
C5—C6—H6120.9N3—C14—C13124.45 (14)
C7—C6—H6120.9N3—C14—H14117.8
O2—C7—C2121.44 (13)C13—C14—H14117.8
O2—C7—C6116.25 (14)C14—N3—C15116.74 (13)
C2—C7—C6122.30 (14)N3—C15—C16123.53 (14)
C8—O2—C7118.70 (12)N3—C15—H15118.2
O2—C8—C9124.91 (13)C16—C15—H15118.2
O2—C8—H8117.5C15—C16—C12118.86 (14)
C9—C8—H8117.5C15—C16—H16120.6
C8—C9—C10119.08 (13)C12—C16—H16120.6
C8—C9—C1120.32 (13)
O1—C1—C2—C7178.30 (15)C1—C9—C10—N27.4 (2)
C9—C1—C2—C71.2 (2)C8—C9—C10—O38.0 (2)
O1—C1—C2—C31.4 (2)C1—C9—C10—O3173.75 (12)
C9—C1—C2—C3179.09 (13)N2—C10—O3—C112.00 (16)
C7—C2—C3—C40.4 (2)C9—C10—O3—C11177.07 (12)
C1—C2—C3—C4179.31 (14)C10—O3—C11—N11.97 (16)
C2—C3—C4—C50.6 (3)C10—O3—C11—C12177.28 (12)
C3—C4—C5—C61.0 (3)O3—C11—N1—N21.26 (18)
C4—C5—C6—C70.4 (3)C12—C11—N1—N2177.93 (14)
C3—C2—C7—O2179.26 (13)O3—C10—N2—N11.33 (18)
C1—C2—C7—O21.1 (2)C9—C10—N2—N1177.61 (14)
C3—C2—C7—C61.0 (2)C11—N1—N2—C100.05 (18)
C1—C2—C7—C6178.66 (14)N1—C11—C12—C161.1 (2)
C5—C6—C7—O2179.60 (14)O3—C11—C12—C16179.80 (13)
C5—C6—C7—C20.7 (2)N1—C11—C12—C13178.16 (15)
C2—C7—O2—C80.2 (2)O3—C11—C12—C131.0 (2)
C6—C7—O2—C8179.93 (13)C16—C12—C13—C140.5 (2)
C7—O2—C8—C91.3 (2)C11—C12—C13—C14179.71 (13)
O2—C8—C9—C10179.26 (13)C12—C13—C14—N30.5 (2)
O2—C8—C9—C11.0 (2)C13—C14—N3—C150.1 (2)
O1—C1—C9—C8179.27 (16)C14—N3—C15—C160.3 (2)
C2—C1—C9—C80.3 (2)N3—C15—C16—C120.3 (2)
O1—C1—C9—C102.5 (2)C13—C12—C16—C150.1 (2)
C2—C1—C9—C10177.96 (12)C11—C12—C16—C15179.37 (14)
C8—C9—C10—N2170.89 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.942.553.2517 (19)132
C14—H14···N1i0.942.633.248 (2)123
Symmetry code: (i) x+1, y, z.
 

References

First citationBanerjee, A. G., Das, N., Shengule, S. A., Srivastava, R. S. & Shrivastava, S. K. (2015). Eur. J. Med. Chem. 101, 81–95.  CrossRef CAS PubMed Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLee, D. H., Jung, Y. J., Koh, D., Lim, Y., Lee, Y. H. & Shin, S. Y. (2016). Cancer Lett. 372, 1–9.  CrossRef CAS PubMed Google Scholar
First citationLi, P., Shi, L., Gao, M. N., Yang, X., Xue, W., Jin, L. H., Hu, D. Y. & Song, B. A. (2015). Bioorg. Med. Chem. Lett. 25, 481–484.  CrossRef CAS PubMed Google Scholar
First citationMochona, B., Qi, X., Euynni, S., Sikazwi, D., Mateeva, N. & Soliman, K. F. (2016). Bioorg. Med. Chem. Lett. 26, 2847–2851.  CrossRef CAS PubMed Google Scholar
First citationSantos, A. F. dos, Cristiano, R., Athayde-Filho, P. F. & Bortoluzzi, A. J. (2014). Acta Cryst. E70, o559.  CSD CrossRef IUCr Journals Google Scholar
First citationSharma, D. K., Shripanavar, C. S., Anthal, S., Gupta, V. K. & Kant, R. (2014). Acta Cryst. E70, o357–o358.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, S. Y., Lee, J. M., Lee, M. S., Koh, D., Jung, H., Lim, Y. & Lee, Y. H. (2014). Clin. Cancer Res. 20, 4302–4313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWani, M. Y., Ahmad, A., Shiekh, R. A., Al-Ghamdi, K. J. & Sobral, A. B. (2015). Bioorg. Med. Chem. 23, 4172–4180.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds