organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(3Z)-5-Chloro-3-(hy­dr­oxy­imino)­indolin-2-one

CROSSMARK_Color_square_no_text.svg

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, 88040-900 Florianópolis-SC, Brazil, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão-SE, Brazil
*Correspondence e-mail: vanessa.gervini@gmail.com

Edited by I. Brito, University of Antofagasta, Chile (Received 18 September 2016; accepted 22 September 2016; online 7 October 2016)

In the title compound, C8H5ClN2O2 (common name: 5-chloro­isatin 3-oxime), the mol­ecular structure deviates slightly from the ideal planarity, with a maximum deviation of 0.0478 (8) Å for the non-H atoms. In the crystal, mol­ecules are linked by N—H⋯O inter­actions, building centrosymmetric dimers with graph-set motif R22(8). Additionally, the mol­ecules are connected by pairs of O—H⋯O inter­actions into chains along [100] with a C(6) motif. The hydrogen-bonded dimers and chains build a two-dimensional network parallel to (100). The packing also features ππ stacking inter­actions between benzene rings [centroid–centroid distance = 3.748 (2) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our study on the structural chemistry of isatin derivatives we report herein the crystal structure of 5-chloro­isatin-3-oxime (for the asymmetric unit, see Fig. 1[link]). The title compound is almost planar with an r.m.s. maximum deviation for the non-H atoms of 0.0478 (8) Å for O2. In the solid state, the mol­ecules are connected into dimers via pairs of N1—H1⋯O1 inter­actions and a graph-set motif [R_{2}^{2}](8) is observed. In addition, the mol­ecules are connected into chains with a C(6) graph-set motif by O2—H5⋯O1 hydrogen bonds (Fig. 2[link] and Table 1[link]). The O—H⋯O inter­actions connect the centrosymmetric dimers building a two-dimensional network, a tape structure, parallel to (100). As the outstanding feature, the ketone oxygen atom, O1, accepts two hydrogen bonds. As the difference between the two H⋯O distances is less than 0.2 Å, the hydrogen bonds presumably have roughly equal strength and the arrangement may be described as symmetric. The packing also features ππ stacking inter­actions between benzene rings [centroid–centroid distance = 3.748 (2) A °].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.00 2.8476 (13) 162
O2—H5⋯O1ii 0.84 1.94 2.7235 (12) 155
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with labeling and displacement ellipsoids drawn at the 40% probability level.
[Figure 2]
Figure 2
Partial view of the crystal structure of the title compound. Hydrogen bonds are shown as dashed lines; see Table 2[link] for details.

Synthesis and crystallization

The glacial acetic acid catalyzed reaction of 5-chloro­isatin (3 mmol) and hydroxyl­amine hydro­chloride (3 mmol) in ethanol (50 ml) was stirred and refluxed for 6 h. After cooling and filtering, single crystals suitable for X-ray diffraction were obtained from the ethano­lic solution by solvent evaporation. For an alternative synthesis of 5-chloro­isatin-3-oxime, see: Kearney et al., 1992[Kearney, T., Harris, P. A., Jackson, A. & Joule, J. A. (1992). Synthesis, 1992, 769-772.].

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H5ClN2O2
Mr 196.59
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 7.4296 (3), 7.5187 (3), 14.3206 (7)
β (°) 94.184 (1)
V3) 797.83 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.44
Crystal size (mm) 0.24 × 0.20 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.902, 0.933
No. of measured, independent and observed [I > 2σ(I)] reflections 10472, 2451, 2182
Rint 0.014
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.095, 1.05
No. of reflections 2451
No. of parameters 119
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

(3Z)-5-Chloro-3-(hydroxyimino)indolin-2-one top
Crystal data top
C8H5ClN2O2F(000) = 400
Mr = 196.59Dx = 1.637 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4296 (3) ÅCell parameters from 5902 reflections
b = 7.5187 (3) Åθ = 2.8–30.6°
c = 14.3206 (7) ŵ = 0.44 mm1
β = 94.184 (1)°T = 200 K
V = 797.83 (6) Å3Prism, orange
Z = 40.24 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
2451 independent reflections
Radiation source: fine-focus sealed tube, Bruker APEX22182 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
φ and ω scansθmax = 30.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1010
Tmin = 0.902, Tmax = 0.933k = 1010
10472 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2884P]
where P = (Fo2 + 2Fc2)/3
2451 reflections(Δ/σ)max = 0.001
119 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58311 (15)0.21274 (15)0.43029 (7)0.0205 (2)
C20.64041 (15)0.39353 (14)0.39942 (7)0.0192 (2)
C30.72801 (14)0.48058 (14)0.48207 (7)0.0182 (2)
C40.80538 (14)0.64698 (15)0.49770 (7)0.0202 (2)
H20.80970.73200.44880.024*
C50.87646 (15)0.68356 (15)0.58850 (7)0.0215 (2)
C60.87171 (16)0.56117 (17)0.66104 (8)0.0246 (2)
H30.92140.59180.72190.030*
C70.79446 (16)0.39372 (16)0.64513 (8)0.0237 (2)
H40.79130.30860.69400.028*
C80.72266 (14)0.35647 (14)0.55542 (7)0.0193 (2)
Cl10.97441 (4)0.89044 (4)0.61183 (2)0.03057 (11)
N10.63574 (13)0.20035 (13)0.52268 (6)0.02202 (19)
H10.61780.10660.55760.026*
N20.59837 (14)0.43956 (13)0.31406 (6)0.0231 (2)
O10.50045 (13)0.09832 (11)0.38255 (6)0.02689 (19)
O20.64795 (14)0.61138 (12)0.29692 (6)0.0291 (2)
H50.61150.63960.24200.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0238 (5)0.0208 (5)0.0166 (4)0.0020 (4)0.0008 (4)0.0000 (4)
C20.0217 (5)0.0208 (5)0.0147 (4)0.0018 (4)0.0004 (3)0.0002 (3)
C30.0192 (4)0.0223 (5)0.0130 (4)0.0027 (4)0.0005 (3)0.0006 (3)
C40.0217 (5)0.0233 (5)0.0153 (4)0.0008 (4)0.0002 (4)0.0012 (4)
C50.0220 (5)0.0238 (5)0.0183 (5)0.0009 (4)0.0021 (4)0.0014 (4)
C60.0273 (5)0.0299 (6)0.0157 (4)0.0004 (4)0.0049 (4)0.0002 (4)
C70.0282 (5)0.0269 (5)0.0154 (5)0.0000 (4)0.0033 (4)0.0040 (4)
C80.0204 (4)0.0212 (5)0.0160 (4)0.0017 (4)0.0010 (3)0.0014 (4)
Cl10.03654 (18)0.02817 (16)0.02608 (16)0.00784 (11)0.00398 (12)0.00205 (10)
N10.0285 (5)0.0207 (4)0.0162 (4)0.0008 (3)0.0029 (3)0.0021 (3)
N20.0282 (5)0.0244 (4)0.0166 (4)0.0011 (4)0.0003 (3)0.0010 (3)
O10.0375 (5)0.0234 (4)0.0190 (4)0.0039 (3)0.0029 (3)0.0013 (3)
O20.0416 (5)0.0271 (4)0.0176 (4)0.0048 (4)0.0044 (3)0.0054 (3)
Geometric parameters (Å, º) top
C1—O11.2343 (13)C5—Cl11.7393 (11)
C1—N11.3551 (13)C6—C71.3955 (16)
C1—C21.5006 (15)C6—H30.9500
C2—N21.2869 (13)C7—C81.3833 (14)
C2—C31.4629 (14)C7—H40.9500
C3—C41.3882 (15)C8—N11.4038 (14)
C3—C81.4078 (14)N1—H10.8800
C4—C51.3947 (14)N2—O21.3704 (13)
C4—H20.9500O2—H50.8400
C5—C61.3902 (16)
O1—C1—N1126.11 (10)C5—C6—C7120.52 (10)
O1—C1—C2127.48 (10)C5—C6—H3119.7
N1—C1—C2106.38 (9)C7—C6—H3119.7
N2—C2—C3135.31 (10)C8—C7—C6117.41 (10)
N2—C2—C1117.97 (10)C8—C7—H4121.3
C3—C2—C1106.62 (9)C6—C7—H4121.3
C4—C3—C8120.73 (9)C7—C8—N1128.05 (10)
C4—C3—C2133.49 (9)C7—C8—C3121.93 (10)
C8—C3—C2105.78 (9)N1—C8—C3110.02 (9)
C3—C4—C5116.89 (10)C1—N1—C8111.19 (9)
C3—C4—H2121.6C1—N1—H1124.4
C5—C4—H2121.6C8—N1—H1124.4
C6—C5—C4122.52 (10)C2—N2—O2111.96 (9)
C6—C5—Cl1118.78 (8)N2—O2—H5109.5
C4—C5—Cl1118.69 (9)
O1—C1—C2—N21.07 (18)C5—C6—C7—C80.52 (18)
N1—C1—C2—N2177.28 (10)C6—C7—C8—N1178.76 (11)
O1—C1—C2—C3178.05 (11)C6—C7—C8—C30.66 (17)
N1—C1—C2—C30.30 (12)C4—C3—C8—C70.45 (16)
N2—C2—C3—C42.8 (2)C2—C3—C8—C7179.89 (10)
C1—C2—C3—C4179.06 (11)C4—C3—C8—N1179.07 (10)
N2—C2—C3—C8176.75 (13)C2—C3—C8—N10.59 (12)
C1—C2—C3—C80.54 (11)O1—C1—N1—C8178.44 (11)
C8—C3—C4—C50.08 (15)C2—C1—N1—C80.07 (12)
C2—C3—C4—C5179.63 (11)C7—C8—N1—C1179.91 (11)
C3—C4—C5—C60.05 (17)C3—C8—N1—C10.43 (13)
C3—C4—C5—Cl1179.83 (8)C3—C2—N2—O20.03 (19)
C4—C5—C6—C70.18 (18)C1—C2—N2—O2175.92 (9)
Cl1—C5—C6—C7179.94 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.002.8476 (13)162
O2—H5···O1ii0.841.942.7235 (12)155
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

ABO is an associate researcher in the project `Di­nitrosyl complexes containing thiol and/or thio­semicarbazone: synthesis, characterization and treatment against cancer', funded by FAPESP, Proc. 2015/12098–0, and acknowledges Professor José Clayston Melo Pereira (UNESP, Brazil) for his support in this work. The authors acknowledge the Laboratory of Crystallography at the Federal University of Santa Catarina (UFSC, Brazil) and the financial support from FINEP (Brazil).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKearney, T., Harris, P. A., Jackson, A. & Joule, J. A. (1992). Synthesis, 1992, 769–772.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds