organic compounds
(3Z)-5-Chloro-3-(hydroxyimino)indolin-2-one
aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, 88040-900 Florianópolis-SC, Brazil, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão-SE, Brazil
*Correspondence e-mail: vanessa.gervini@gmail.com
In the title compound, C8H5ClN2O2 (common name: 5-chloroisatin 3-oxime), the molecular structure deviates slightly from the ideal planarity, with a maximum deviation of 0.0478 (8) Å for the non-H atoms. In the crystal, molecules are linked by N—H⋯O interactions, building centrosymmetric dimers with graph-set motif R22(8). Additionally, the molecules are connected by pairs of O—H⋯O interactions into chains along [100] with a C(6) motif. The hydrogen-bonded dimers and chains build a two-dimensional network parallel to (100). The packing also features π–π stacking interactions between benzene rings [centroid–centroid distance = 3.748 (2) Å].
Keywords: crystal structure; chloroisatin derivative; two-dimensional hydrogen-bonded network; oxime derivative.
CCDC reference: 1505940
Structure description
As part of our study on the structural chemistry of isatin derivatives we report herein the ). The title compound is almost planar with an r.m.s. maximum deviation for the non-H atoms of 0.0478 (8) Å for O2. In the solid state, the molecules are connected into dimers via pairs of N1—H1⋯O1 interactions and a graph-set motif (8) is observed. In addition, the molecules are connected into chains with a C(6) graph-set motif by O2—H5⋯O1 hydrogen bonds (Fig. 2 and Table 1). The O—H⋯O interactions connect the centrosymmetric dimers building a two-dimensional network, a tape structure, parallel to (100). As the outstanding feature, the ketone oxygen atom, O1, accepts two hydrogen bonds. As the difference between the two H⋯O distances is less than 0.2 Å, the hydrogen bonds presumably have roughly equal strength and the arrangement may be described as symmetric. The packing also features π–π stacking interactions between benzene rings [centroid–centroid distance = 3.748 (2) A °].
of 5-chloroisatin-3-oxime (for the see Fig. 1Synthesis and crystallization
The glacial acetic acid catalyzed reaction of 5-chloroisatin (3 mmol) and hydroxylamine hydrochloride (3 mmol) in ethanol (50 ml) was stirred and refluxed for 6 h. After cooling and filtering, single crystals suitable for X-ray diffraction were obtained from the ethanolic solution by solvent evaporation. For an alternative synthesis of 5-chloroisatin-3-oxime, see: Kearney et al., 1992.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1505940
https://doi.org/10.1107/S2414314616015066/bx4003sup1.cif
contains datablock . DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616015066/bx4003Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616015066/bx4003Isup3.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).C8H5ClN2O2 | F(000) = 400 |
Mr = 196.59 | Dx = 1.637 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4296 (3) Å | Cell parameters from 5902 reflections |
b = 7.5187 (3) Å | θ = 2.8–30.6° |
c = 14.3206 (7) Å | µ = 0.44 mm−1 |
β = 94.184 (1)° | T = 200 K |
V = 797.83 (6) Å3 | Prism, orange |
Z = 4 | 0.24 × 0.20 × 0.16 mm |
Bruker APEXII CCD diffractometer | 2451 independent reflections |
Radiation source: fine-focus sealed tube, Bruker APEX2 | 2182 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
φ and ω scans | θmax = 30.6°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −10→10 |
Tmin = 0.902, Tmax = 0.933 | k = −10→10 |
10472 measured reflections | l = −19→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2884P] where P = (Fo2 + 2Fc2)/3 |
2451 reflections | (Δ/σ)max = 0.001 |
119 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.58311 (15) | 0.21274 (15) | 0.43029 (7) | 0.0205 (2) | |
C2 | 0.64041 (15) | 0.39353 (14) | 0.39942 (7) | 0.0192 (2) | |
C3 | 0.72801 (14) | 0.48058 (14) | 0.48207 (7) | 0.0182 (2) | |
C4 | 0.80538 (14) | 0.64698 (15) | 0.49770 (7) | 0.0202 (2) | |
H2 | 0.8097 | 0.7320 | 0.4488 | 0.024* | |
C5 | 0.87646 (15) | 0.68356 (15) | 0.58850 (7) | 0.0215 (2) | |
C6 | 0.87171 (16) | 0.56117 (17) | 0.66104 (8) | 0.0246 (2) | |
H3 | 0.9214 | 0.5918 | 0.7219 | 0.030* | |
C7 | 0.79446 (16) | 0.39372 (16) | 0.64513 (8) | 0.0237 (2) | |
H4 | 0.7913 | 0.3086 | 0.6940 | 0.028* | |
C8 | 0.72266 (14) | 0.35647 (14) | 0.55542 (7) | 0.0193 (2) | |
Cl1 | 0.97441 (4) | 0.89044 (4) | 0.61183 (2) | 0.03057 (11) | |
N1 | 0.63574 (13) | 0.20035 (13) | 0.52268 (6) | 0.02202 (19) | |
H1 | 0.6178 | 0.1066 | 0.5576 | 0.026* | |
N2 | 0.59837 (14) | 0.43956 (13) | 0.31406 (6) | 0.0231 (2) | |
O1 | 0.50045 (13) | 0.09832 (11) | 0.38255 (6) | 0.02689 (19) | |
O2 | 0.64795 (14) | 0.61138 (12) | 0.29692 (6) | 0.0291 (2) | |
H5 | 0.6115 | 0.6396 | 0.2420 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0238 (5) | 0.0208 (5) | 0.0166 (4) | 0.0020 (4) | −0.0008 (4) | 0.0000 (4) |
C2 | 0.0217 (5) | 0.0208 (5) | 0.0147 (4) | 0.0018 (4) | −0.0004 (3) | −0.0002 (3) |
C3 | 0.0192 (4) | 0.0223 (5) | 0.0130 (4) | 0.0027 (4) | −0.0005 (3) | 0.0006 (3) |
C4 | 0.0217 (5) | 0.0233 (5) | 0.0153 (4) | 0.0008 (4) | −0.0002 (4) | 0.0012 (4) |
C5 | 0.0220 (5) | 0.0238 (5) | 0.0183 (5) | −0.0009 (4) | −0.0021 (4) | −0.0014 (4) |
C6 | 0.0273 (5) | 0.0299 (6) | 0.0157 (4) | −0.0004 (4) | −0.0049 (4) | 0.0002 (4) |
C7 | 0.0282 (5) | 0.0269 (5) | 0.0154 (5) | 0.0000 (4) | −0.0033 (4) | 0.0040 (4) |
C8 | 0.0204 (4) | 0.0212 (5) | 0.0160 (4) | 0.0017 (4) | −0.0010 (3) | 0.0014 (4) |
Cl1 | 0.03654 (18) | 0.02817 (16) | 0.02608 (16) | −0.00784 (11) | −0.00398 (12) | −0.00205 (10) |
N1 | 0.0285 (5) | 0.0207 (4) | 0.0162 (4) | −0.0008 (3) | −0.0029 (3) | 0.0021 (3) |
N2 | 0.0282 (5) | 0.0244 (4) | 0.0166 (4) | 0.0011 (4) | −0.0003 (3) | 0.0010 (3) |
O1 | 0.0375 (5) | 0.0234 (4) | 0.0190 (4) | −0.0039 (3) | −0.0029 (3) | −0.0013 (3) |
O2 | 0.0416 (5) | 0.0271 (4) | 0.0176 (4) | −0.0048 (4) | −0.0044 (3) | 0.0054 (3) |
C1—O1 | 1.2343 (13) | C5—Cl1 | 1.7393 (11) |
C1—N1 | 1.3551 (13) | C6—C7 | 1.3955 (16) |
C1—C2 | 1.5006 (15) | C6—H3 | 0.9500 |
C2—N2 | 1.2869 (13) | C7—C8 | 1.3833 (14) |
C2—C3 | 1.4629 (14) | C7—H4 | 0.9500 |
C3—C4 | 1.3882 (15) | C8—N1 | 1.4038 (14) |
C3—C8 | 1.4078 (14) | N1—H1 | 0.8800 |
C4—C5 | 1.3947 (14) | N2—O2 | 1.3704 (13) |
C4—H2 | 0.9500 | O2—H5 | 0.8400 |
C5—C6 | 1.3902 (16) | ||
O1—C1—N1 | 126.11 (10) | C5—C6—C7 | 120.52 (10) |
O1—C1—C2 | 127.48 (10) | C5—C6—H3 | 119.7 |
N1—C1—C2 | 106.38 (9) | C7—C6—H3 | 119.7 |
N2—C2—C3 | 135.31 (10) | C8—C7—C6 | 117.41 (10) |
N2—C2—C1 | 117.97 (10) | C8—C7—H4 | 121.3 |
C3—C2—C1 | 106.62 (9) | C6—C7—H4 | 121.3 |
C4—C3—C8 | 120.73 (9) | C7—C8—N1 | 128.05 (10) |
C4—C3—C2 | 133.49 (9) | C7—C8—C3 | 121.93 (10) |
C8—C3—C2 | 105.78 (9) | N1—C8—C3 | 110.02 (9) |
C3—C4—C5 | 116.89 (10) | C1—N1—C8 | 111.19 (9) |
C3—C4—H2 | 121.6 | C1—N1—H1 | 124.4 |
C5—C4—H2 | 121.6 | C8—N1—H1 | 124.4 |
C6—C5—C4 | 122.52 (10) | C2—N2—O2 | 111.96 (9) |
C6—C5—Cl1 | 118.78 (8) | N2—O2—H5 | 109.5 |
C4—C5—Cl1 | 118.69 (9) | ||
O1—C1—C2—N2 | 1.07 (18) | C5—C6—C7—C8 | −0.52 (18) |
N1—C1—C2—N2 | −177.28 (10) | C6—C7—C8—N1 | −178.76 (11) |
O1—C1—C2—C3 | 178.05 (11) | C6—C7—C8—C3 | 0.66 (17) |
N1—C1—C2—C3 | −0.30 (12) | C4—C3—C8—C7 | −0.45 (16) |
N2—C2—C3—C4 | −2.8 (2) | C2—C3—C8—C7 | 179.89 (10) |
C1—C2—C3—C4 | −179.06 (11) | C4—C3—C8—N1 | 179.07 (10) |
N2—C2—C3—C8 | 176.75 (13) | C2—C3—C8—N1 | −0.59 (12) |
C1—C2—C3—C8 | 0.54 (11) | O1—C1—N1—C8 | −178.44 (11) |
C8—C3—C4—C5 | 0.08 (15) | C2—C1—N1—C8 | −0.07 (12) |
C2—C3—C4—C5 | 179.63 (11) | C7—C8—N1—C1 | 179.91 (11) |
C3—C4—C5—C6 | 0.05 (17) | C3—C8—N1—C1 | 0.43 (13) |
C3—C4—C5—Cl1 | −179.83 (8) | C3—C2—N2—O2 | 0.03 (19) |
C4—C5—C6—C7 | 0.18 (18) | C1—C2—N2—O2 | 175.92 (9) |
Cl1—C5—C6—C7 | −179.94 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.88 | 2.00 | 2.8476 (13) | 162 |
O2—H5···O1ii | 0.84 | 1.94 | 2.7235 (12) | 155 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
ABO is an associate researcher in the project `Dinitrosyl complexes containing thiol and/or thiosemicarbazone: synthesis, characterization and treatment against cancer', funded by FAPESP, Proc. 2015/12098–0, and acknowledges Professor José Clayston Melo Pereira (UNESP, Brazil) for his support in this work. The authors acknowledge the Laboratory of Crystallography at the Federal University of Santa Catarina (UFSC, Brazil) and the financial support from FINEP (Brazil).
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kearney, T., Harris, P. A., Jackson, A. & Joule, J. A. (1992). Synthesis, 1992, 769–772. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.