metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Chlorido­bis­­[2-(pyridin-2-yl-κN)benzo[b][1,5]naphthyridine-κN1]copper(II) perchlorate aceto­nitrile disolvate

CROSSMARK_Color_square_no_text.svg

aGraduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, and bInstitute for Integrated Cell-Material Science (iCeMS), Kyoto University, Advanced Chemical Technology Center in Kyoto, 105 Jibu-cho, Fushimi-ku, Kyoto, 612-8374, Japan
*Correspondence e-mail: ohtsu@sci.u-toyama.ac.jp

Edited by M. Bolte, Goethe-Universität Frankfurt Germany (Received 19 September 2016; accepted 4 October 2016; online 11 October 2016)

The copper(II) ion in the title complex, [CuCl(C17H11N3)2]ClO4·2CH3CN, is coordinated by four N atoms from two pbn ligands and one Cl ion in a distorted trigonal–bipyramidal geometry (τ = 0.84). The asymmetric unit comprises half of the cationic complex molecule, and complete mol­ecules are generated by twofold rotation symmetry with the corresponding axis running through the Cu atom and the coordinating Cl atom. The perchlorate anion is also located on a twofold rotation axis (passing through the Cl atom). In the crystal, there are ππ stacking inter­actions between the benzonaphthyridine rings of the pbn ligand of neighbouring cations.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Understanding the relationship between coordination geometry and reactivity of complexes containing the NAD+/NADH-analogous ligand pbn [pbn = 2-(pyridin-2-yl)benzo[b][1,5]naphthyridine] is of great inter­est and importance in order to develop a photorenewable hydride reagent. In our previous studies, photocatalytic CO2 reduction using the pbn complex has proved to be successful (Ohtsu & Tanaka, 2012[Ohtsu, H. & Tanaka, K. (2012). Angew. Chem. Int. Ed. 51, 9792-9795.]), and control over the reaction rate of the CO2 hydride reduction using a pbn complex has been accomplished by tuning of the basicity of the bases (Ohtsu et al., 2015[Ohtsu, H., Tsuge, K. & Tanaka, K. (2015). J. Photochem. Photobiol. Chem. 313, 163-167.]). As part of our ongoing research on transition-metal complexes containing a pbn ligand, we have synthesized a new copper(II) pbn complex and its structure determination has been undertaken.

The mol­ecular structure of the title complex is shown in Fig. 1[link]. The copper(II) ion of the cation has a penta­coordinate structure formed by four N atoms from two pbn ligands and one Cl ligand. The complex cation exhibits point group symmetry 2, with the twofold rotation axis running through Cu1 and Cl1. The perchlorate anion is also located on a twofold rotation axis (passing through Cl2). The bond lengths from the copper to each of donor N atoms and chloride are Cu1—N1 2.0230 (18) Å, Cu1—N3 2.0778 (19) Å, and Cu1—Cl1 2.2795 (9) Å. The qu­anti­tative difference in five-coordinate geometry is indicated by the τ parameter, the value of which can range from τ = 1 for a perfect trigonal–bipyramidal geometry to τ = 0 for a perfect square-pyramidal geometry (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The τ value for the copper(II) ion of the cation in the title complex is calculated to be 0.84 using the equation τ = (β − α)/60 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), where α = N3—Cu1—Cl1 [125.66 (5)°] and β = N1—Cu1—N1i [175.78 (11)°; symmetry code: (i) x, [{1\over 2}] − y, [{1\over 2}] − z). Thus, the coordination environment of the copper(II) ion in [Cu(pbn)2Cl]+ is slightly distorted trigonal–bipyramidal.

[Figure 1]
Figure 1
The mol­ecular structure of the title complex, with displacement ellipsoids at the 30% probability level [symmetry codes: (i) x, [{1\over 2}] − y, [{1\over 2}] − z; (ii) [{1\over 2}] − x, −y, z]. H atoms have been omitted for clarity.

The crystal packing of the title complex is shown in Fig. 2[link]. The relatively short inter­planar distances between the benzonaphthyridine rings of the pbn ligand of neighbouring cations indicate inter­molecular ππ stacking inter­actions [distance between the centroids of the (C8/N2/C9–C12) and (C2/N1/C1/C9/C10/C3)ii rings = 3.6070 (3) Å; symmetry code: (ii) −[{1\over 2}] + x, y, 1 − z].

[Figure 2]
Figure 2
The crystal packing of the title complex, viewed along the a axis. H atoms have been omitted for clarity.

Synthesis and crystallization

The NAD+/NADH-analogous ligand pbn [pbn = 2-(pyridin-2-yl)benzo[b][1,5]naphthyridine] was prepared according to the procedure of Koizumi & Tanaka (2005[Koizumi, T.-a. & Tanaka, K. (2005). Angew. Chem. Int. Ed. 44, 5891-5894.]). To a di­chloro­methane solution (4 ml) of pbn (50.0 mg, 0.19 mmol) was added dropwise a mixture of CuCl2·2H2O (8.3 mg, 0.05 mmol) and Cu(ClO4)2·6H2O (19.9 mg, 0.05 mmol) in aceto­nitrile (4 ml). The resulting pale yellow–green precipitate was filtered and dissolved in hot aceto­nitrile for recrystallization. After the solution was left to stand for a few weeks at room temperature, pale yellow–green crystals of the title complex, [Cu(pbn)2Cl]ClO4·2CH3CN, were obtained (yield: 33.7 mg, 48.6%). Elemental analysis found: C 53.40, H 3.55, N 10.83%; calculated for C34H28Cl2CuN6O7: C 53.24, H 3.68, N 10.96%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [CuCl(C17H11N3)2]ClO4·2C2H3N
Mr 795.14
Crystal system, space group Orthorhombic, Pnna
Temperature (K) 173
a, b, c (Å) 7.53614 (16), 30.5246 (6), 15.4918 (4)
V3) 3563.71 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.82
Crystal size (mm) 0.25 × 0.23 × 0.02
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.751, 0.984
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 32886, 4072, 3235
Rint 0.043
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.132, 1.06
No. of reflections 4072
No. of parameters 242
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.81, −0.50
Computer programs: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), CrystalStructure (Rigaku, 2016[Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2016), Mercury (Macrae et al., 2008) and CrystalMaker (Palmer, 2007); software used to prepare material for publication: CrystalStructure (Rigaku, 2016) and publCIF (Westrip, 2010).

Chloridobis[2-(pyridin-2-yl-κN)benzo[b][1,5]naphthyridine-κN1]copper(II) perchlorate acetonitrile disolvate top
Crystal data top
[CuCl(C17H11N3)2]ClO4·2C2H3NDx = 1.482 Mg m3
Mr = 795.14Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, PnnaCell parameters from 21593 reflections
a = 7.53614 (16) Åθ = 3.0–27.5°
b = 30.5246 (6) ŵ = 0.82 mm1
c = 15.4918 (4) ÅT = 173 K
V = 3563.71 (13) Å3Platelet, yellowish green
Z = 40.25 × 0.23 × 0.02 mm
F(000) = 1628.00
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3235 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.043
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 89
Tmin = 0.751, Tmax = 0.984k = 3939
32886 measured reflectionsl = 2020
4072 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0731P)2 + 2.7626P]
where P = (Fo2 + 2Fc2)/3
4072 reflections(Δ/σ)max < 0.001
242 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.50 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
CU10.27555 (5)0.2500000.2500000.02241 (13)
CL10.02693 (11)0.2500000.2500000.0367 (2)
CL20.7500000.0000000.16427 (8)0.0533 (3)
O10.8062 (9)0.03461 (19)0.1220 (6)0.244 (4)
O20.6099 (6)0.01641 (18)0.2183 (3)0.1367 (17)
N10.2854 (2)0.23357 (6)0.37642 (12)0.0233 (4)
N20.1294 (3)0.15656 (7)0.54355 (13)0.0294 (4)
N30.4363 (3)0.30003 (6)0.29646 (12)0.0271 (4)
N40.1061 (4)0.13340 (10)0.12987 (17)0.0557 (7)
C10.3578 (3)0.26382 (7)0.42751 (14)0.0241 (5)
C20.3555 (3)0.26007 (8)0.51920 (15)0.0283 (5)
H20.4076360.2822440.5539510.034*
C30.2785 (3)0.22473 (8)0.55655 (14)0.0282 (5)
H30.2753130.2222350.6176560.034*
C40.0133 (3)0.08709 (8)0.53424 (18)0.0357 (6)
H40.0174680.0854550.5954430.043*
C50.0791 (4)0.05395 (9)0.48647 (19)0.0403 (6)
H50.1291110.0292120.5146020.048*
C60.0750 (4)0.05533 (8)0.3947 (2)0.0408 (6)
H60.1205430.0313920.3623450.049*
C70.0063 (4)0.09064 (8)0.35284 (17)0.0353 (6)
H70.0057780.0913900.2915360.042*
C80.1360 (3)0.16370 (7)0.36126 (15)0.0268 (5)
H80.1351990.1664290.3001750.032*
C90.2028 (3)0.19150 (7)0.50445 (15)0.0250 (5)
C100.2084 (3)0.19688 (7)0.41263 (14)0.0232 (4)
C110.0629 (3)0.12479 (8)0.49334 (16)0.0287 (5)
C120.0652 (3)0.12666 (7)0.40064 (15)0.0280 (5)
C130.4470 (3)0.30072 (7)0.38324 (15)0.0266 (5)
C140.5399 (4)0.33320 (8)0.42694 (17)0.0347 (6)
H140.5453060.3331790.4882030.042*
C150.6248 (4)0.36570 (9)0.37968 (19)0.0424 (7)
H150.6882120.3884220.4080400.051*
C160.6153 (4)0.36437 (9)0.2907 (2)0.0414 (6)
H160.6734720.3860180.2569820.050*
C170.5203 (3)0.33121 (9)0.25129 (16)0.0334 (5)
H170.5142870.3304960.1900500.040*
C180.2394 (6)0.05650 (14)0.1102 (4)0.0886 (15)
H18A0.2560400.0504340.0485640.106*
H18B0.1588880.0346790.1350160.106*
H18C0.3542690.0550800.1396910.106*
C190.1648 (5)0.09945 (11)0.1207 (2)0.0506 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
CU10.0261 (2)0.0236 (2)0.0175 (2)0.0000.0000.00087 (14)
CL10.0256 (4)0.0562 (6)0.0283 (4)0.0000.0000.0163 (4)
CL20.0604 (7)0.0417 (5)0.0579 (7)0.0012 (5)0.0000.000
O10.189 (6)0.131 (4)0.412 (11)0.034 (4)0.106 (6)0.162 (6)
O20.118 (3)0.190 (4)0.102 (3)0.080 (3)0.014 (2)0.006 (3)
N10.0255 (10)0.0250 (9)0.0192 (9)0.0038 (8)0.0017 (7)0.0003 (7)
N20.0269 (10)0.0343 (11)0.0269 (10)0.0065 (8)0.0020 (8)0.0043 (8)
N30.0275 (10)0.0282 (9)0.0257 (10)0.0009 (8)0.0001 (8)0.0038 (8)
N40.0638 (18)0.0584 (17)0.0449 (15)0.0029 (14)0.0009 (13)0.0052 (13)
C10.0235 (11)0.0258 (10)0.0230 (11)0.0055 (9)0.0033 (9)0.0024 (8)
C20.0256 (12)0.0351 (12)0.0243 (11)0.0042 (9)0.0046 (9)0.0079 (9)
C30.0271 (12)0.0388 (13)0.0187 (10)0.0069 (10)0.0013 (9)0.0014 (9)
C40.0305 (13)0.0373 (13)0.0393 (13)0.0066 (11)0.0048 (11)0.0095 (11)
C50.0330 (14)0.0333 (13)0.0545 (17)0.0014 (11)0.0074 (12)0.0125 (12)
C60.0384 (14)0.0281 (12)0.0559 (17)0.0023 (11)0.0018 (13)0.0029 (12)
C70.0365 (14)0.0319 (12)0.0375 (13)0.0006 (11)0.0021 (11)0.0029 (10)
C80.0308 (12)0.0259 (11)0.0236 (10)0.0034 (9)0.0018 (9)0.0012 (9)
C90.0243 (11)0.0290 (11)0.0219 (10)0.0073 (9)0.0001 (8)0.0001 (9)
C100.0228 (11)0.0246 (10)0.0223 (10)0.0054 (9)0.0014 (8)0.0002 (8)
C110.0253 (12)0.0302 (11)0.0305 (12)0.0072 (10)0.0029 (9)0.0047 (9)
C120.0258 (11)0.0273 (11)0.0310 (12)0.0047 (9)0.0006 (10)0.0003 (9)
C130.0249 (11)0.0273 (11)0.0276 (11)0.0046 (9)0.0034 (9)0.0040 (9)
C140.0391 (14)0.0323 (12)0.0327 (13)0.0006 (11)0.0080 (11)0.0057 (10)
C150.0439 (16)0.0360 (14)0.0472 (16)0.0102 (12)0.0105 (13)0.0064 (12)
C160.0385 (15)0.0383 (14)0.0473 (16)0.0134 (12)0.0009 (12)0.0009 (12)
C170.0326 (13)0.0359 (13)0.0316 (12)0.0066 (11)0.0025 (10)0.0000 (10)
C180.075 (3)0.058 (2)0.132 (4)0.005 (2)0.007 (3)0.001 (3)
C190.0528 (18)0.0517 (18)0.0473 (17)0.0038 (16)0.0015 (15)0.0086 (14)
Geometric parameters (Å, º) top
CU1—N12.0230 (18)C4—H40.9500
CU1—N1i2.0230 (18)C5—C61.423 (4)
CU1—N32.0778 (19)C5—H50.9500
CU1—N3i2.0779 (19)C6—C71.360 (4)
CU1—CL12.2795 (9)C6—H60.9500
CL2—O1ii1.313 (5)C7—C121.431 (3)
CL2—O11.313 (5)C7—H70.9500
CL2—O21.438 (4)C8—C121.391 (3)
CL2—O2ii1.438 (4)C8—C101.399 (3)
N1—C11.333 (3)C8—H80.9500
N1—C101.381 (3)C9—C101.433 (3)
N2—C111.341 (3)C11—C121.437 (3)
N2—C91.345 (3)C13—C141.390 (3)
N3—C171.340 (3)C14—C151.389 (4)
N3—C131.347 (3)C14—H140.9500
N4—C191.136 (4)C15—C161.380 (4)
C1—C21.425 (3)C15—H150.9500
C1—C131.480 (3)C16—C171.382 (4)
C2—C31.355 (4)C16—H160.9500
C2—H20.9500C17—H170.9500
C3—C91.416 (3)C18—C191.436 (6)
C3—H30.9500C18—H18A0.9800
C4—C51.348 (4)C18—H18B0.9800
C4—C111.434 (3)C18—H18C0.9800
N1—CU1—N1i175.78 (11)C6—C7—C12120.4 (2)
N1—CU1—N379.95 (8)C6—C7—H7119.8
N1i—CU1—N397.56 (7)C12—C7—H7119.8
N1—CU1—N3i97.57 (7)C12—C8—C10119.3 (2)
N1i—CU1—N3i79.95 (8)C12—C8—H8120.4
N3—CU1—N3i108.69 (11)C10—C8—H8120.4
N1—CU1—CL192.11 (5)N2—C9—C3118.5 (2)
N1i—CU1—CL192.11 (5)N2—C9—C10123.4 (2)
N3—CU1—CL1125.66 (5)C3—C9—C10118.2 (2)
N3i—CU1—CL1125.65 (5)N1—C10—C8121.3 (2)
O1ii—CL2—O1120.2 (9)N1—C10—C9120.6 (2)
O1ii—CL2—O2109.5 (4)C8—C10—C9118.1 (2)
O1—CL2—O2104.3 (4)N2—C11—C4118.3 (2)
O1ii—CL2—O2ii104.3 (4)N2—C11—C12123.1 (2)
O1—CL2—O2ii109.5 (4)C4—C11—C12118.6 (2)
O2—CL2—O2ii108.8 (4)C8—C12—C7122.8 (2)
C1—N1—C10119.52 (19)C8—C12—C11118.4 (2)
C1—N1—CU1114.72 (15)C7—C12—C11118.8 (2)
C10—N1—CU1125.38 (15)N3—C13—C14121.8 (2)
C11—N2—C9117.8 (2)N3—C13—C1115.0 (2)
C17—N3—C13118.8 (2)C14—C13—C1123.1 (2)
C17—N3—CU1128.05 (16)C15—C14—C13119.0 (2)
C13—N3—CU1113.10 (16)C15—C14—H14120.5
N1—C1—C2122.1 (2)C13—C14—H14120.5
N1—C1—C13116.0 (2)C16—C15—C14118.8 (2)
C2—C1—C13121.9 (2)C16—C15—H15120.6
C3—C2—C1119.7 (2)C14—C15—H15120.6
C3—C2—H2120.2C15—C16—C17119.3 (3)
C1—C2—H2120.2C15—C16—H16120.3
C2—C3—C9120.0 (2)C17—C16—H16120.3
C2—C3—H3120.0N3—C17—C16122.3 (2)
C9—C3—H3120.0N3—C17—H17118.9
C5—C4—C11120.5 (2)C16—C17—H17118.9
C5—C4—H4119.8C19—C18—H18A109.5
C11—C4—H4119.8C19—C18—H18B109.5
C4—C5—C6121.2 (2)H18A—C18—H18B109.5
C4—C5—H5119.4C19—C18—H18C109.5
C6—C5—H5119.4H18A—C18—H18C109.5
C7—C6—C5120.5 (3)H18B—C18—H18C109.5
C7—C6—H6119.7N4—C19—C18179.3 (4)
C5—C6—H6119.7
C10—N1—C1—C21.3 (3)C5—C4—C11—N2178.8 (2)
CU1—N1—C1—C2172.05 (17)C5—C4—C11—C120.9 (4)
C10—N1—C1—C13176.41 (19)C10—C8—C12—C7178.0 (2)
CU1—N1—C1—C1310.3 (2)C10—C8—C12—C112.5 (3)
N1—C1—C2—C30.3 (4)C6—C7—C12—C8179.6 (2)
C13—C1—C2—C3177.2 (2)C6—C7—C12—C110.0 (4)
C1—C2—C3—C90.8 (3)N2—C11—C12—C81.6 (4)
C11—C4—C5—C60.0 (4)C4—C11—C12—C8178.7 (2)
C4—C5—C6—C70.9 (4)N2—C11—C12—C7178.8 (2)
C5—C6—C7—C120.9 (4)C4—C11—C12—C70.9 (3)
C11—N2—C9—C3178.1 (2)C17—N3—C13—C141.1 (4)
C11—N2—C9—C101.9 (3)CU1—N3—C13—C14176.30 (18)
C2—C3—C9—N2179.2 (2)C17—N3—C13—C1177.1 (2)
C2—C3—C9—C100.9 (3)CU1—N3—C13—C15.5 (2)
C1—N1—C10—C8177.9 (2)N1—C1—C13—N33.0 (3)
CU1—N1—C10—C89.5 (3)C2—C1—C13—N3179.3 (2)
C1—N1—C10—C91.1 (3)N1—C1—C13—C14175.2 (2)
CU1—N1—C10—C9171.43 (15)C2—C1—C13—C142.5 (4)
C12—C8—C10—N1177.8 (2)N3—C13—C14—C150.4 (4)
C12—C8—C10—C91.3 (3)C1—C13—C14—C15177.7 (2)
N2—C9—C10—N1179.9 (2)C13—C14—C15—C160.6 (4)
C3—C9—C10—N10.1 (3)C14—C15—C16—C170.8 (4)
N2—C9—C10—C81.0 (3)C13—N3—C17—C161.0 (4)
C3—C9—C10—C8179.0 (2)CU1—N3—C17—C16176.0 (2)
C9—N2—C11—C4179.1 (2)C15—C16—C17—N30.0 (4)
C9—N2—C11—C120.6 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+3/2, y, z.
 

Acknowledgements

This work was supported in part by Grant-in-Aids for Scientific Research B (No. 26288024, to KT) and for Scientific Research C (No. 25410067, to HO) from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKoizumi, T.-a. & Tanaka, K. (2005). Angew. Chem. Int. Ed. 44, 5891–5894.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOhtsu, H. & Tanaka, K. (2012). Angew. Chem. Int. Ed. 51, 9792–9795.  Web of Science CrossRef CAS Google Scholar
First citationOhtsu, H., Tsuge, K. & Tanaka, K. (2015). J. Photochem. Photobiol. Chem. 313, 163–167.  Web of Science CrossRef CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds